AI对接之FIM补全技术

AI的FIM补全技术:实际应用案例解析

前言

本系列AI的API对接均以 DeepSeek 为例,其他大模型的对接方式类似。

在人工智能领域,自然语言处理(NLP)技术的发展日新月异,其中FIM(Function and Intention Matching)补全技术因其在代码生成和文本补全方面的高效应用而备受关注。

本文将通过两个实际的对接案例,展示FIM补全技术在实际场景中的应用。

案例一:代码生成

背景介绍

在软件开发过程中,程序员经常需要编写重复的代码逻辑,如排序算法、数据结构的实现等。

FIM补全技术可以帮助程序员快速生成这些代码,提高开发效率。

实际应用

假设我们需要生成一个简单的冒泡排序算法。

我们可以通过设置prompt参数来指定函数的开始部分,并通过suffix参数来指定函数的结束部分,让AI填充中间的逻辑。

python 复制代码
from openai import OpenAI

client = OpenAI(
    api_key="你的API密钥",
    base_url="https://api.deepseek.com/beta",
)

response = client.completions.create(
    model="deepseek-chat",
    prompt="def bubble_sort(arr):",
    suffix="    # 排序完成,返回数组",
    max_tokens=128
)
print(response.choices[0].text)

在这个案例中,prompt定义了函数的名称和参数,suffix提供了函数的结束注释,AI将根据这些信息补全冒泡排序的具体实现代码。

案例二:文本内容补全

背景介绍

在内容创作领域,如新闻撰写、博客文章等,作者可能需要快速生成或补全文本内容。

FIM补全技术可以根据给定的上下文,智能生成连贯的文本内容。

实际应用

假设我们正在撰写一篇关于人工智能发展的文章,需要AI帮助补全某个段落。

我们可以设置prompt参数来提供文章的开头部分,并通过suffix参数来指定段落的结束。

python 复制代码
from openai import OpenAI

client = OpenAI(
    api_key="你的API密钥",
    base_url="https://api.deepseek.com/beta",
)

response = client.completions.create(
    model="deepseek-chat",
    prompt="人工智能的发展已经改变了我们的生活和工作方式。",
    suffix="这些技术的应用前景广阔,值得我们深入研究和探索。",
    max_tokens=128
)
print(response.choices[0].text)

在这个案例中,prompt提供了文章的起始句,suffix定义了段落的结束句,AI将根据这些信息生成中间的文本内容,使文章更加完整和连贯。

结论

通过这两个案例,我们可以看到FIM补全技术在代码生成和文本内容补全方面的实际应用价值。

通过合理设置promptsuffix参数,AI能够根据上下文信息智能补全所需的内容,极大地提高了工作效率和内容创作的灵活性。

随着AI技术的不断进步,FIM补全技术将在更多领域展现其强大的潜力。

-- 欢迎点赞、关注、转发、收藏【我码玄黄】,各大平台同名。

相关推荐
研华科技Advantech5 分钟前
储能AI化的数据瓶颈与破解路径:研华全栈方案实践分析
数据库·人工智能·储能·智能体
一瞬祈望9 分钟前
【环境配置】Windows 下使用 Anaconda 创建 Python 3.8 环境 + 安装 PyTorch + CUDA(完整教程)
pytorch·windows·python
小兔崽子去哪了20 分钟前
RFM 模型 项目实战
python
Likeadust31 分钟前
视频直播点播平台EasyDSS助力企业打造全场景数字化宣传体系
运维·人工智能·音视频
昨天那个谁谁32 分钟前
ROS2运行时报无法加载create_key等符号错误
c++·python·ros2
韩曙亮1 小时前
【AI 大模型】LangChain 框架 ① ( LangChain 简介 | LangChain 模块 | LangChain 文档 )
人工智能·ai·langchain·llm·大语言模型·prompts·agents
码农阿豪1 小时前
本地 AI 模型随心用!Cherry Studio + cpolar解锁跨设备智能办公
人工智能
通义灵码1 小时前
用 Qoder 加速前端巨石应用的架构演进
前端·人工智能·架构·qoder
一水鉴天1 小时前
整体设计 定稿 之21 拼语言表述体系之3 dashboard.html V5(codebuddy)
前端·人工智能·架构
nju_spy1 小时前
python 算法题基础常用总结(比赛 or 机试 or 面试)
python·记忆化搜索·位运算·二分查找 - bisect·排序与lambda·最短路和最小生成树·堆与优先队列