Pytorch详解 train() 和 eval() 模式会影响Layer Norm吗?(中英双语)

train和eval会影响layernorm吗?

中文版

在 PyTorch 中,train()eval() 模式的切换主要影响的是 BatchNormDropout 层,而对 LayerNorm 层的影响较小,几乎没有直接的影响。

BatchNorm 和 LayerNorm 的区别

请参考笔者的另一篇博客:以[Today is great] [ How are you]两句话为例:学习Batch Norm和Layer Norm

具体影响

  • BatchNorm :在训练模式下,BatchNorm 会使用当前批次的数据统计来更新模型参数,而在评估模式下,它会使用在训练期间累计的均值和方差。因此,train()eval() 会显著影响 BatchNorm 的表现,尤其是在推理阶段,模型会使用更加稳定的统计数据进行推理。具体可以参考笔者的另一篇博客:Pytorch详解 train() 和 eval() 模式切换对 BatchNorm 层的影响:中英双语

  • LayerNormLayerNorm 不依赖于批次的均值和方差,它在训练和推理阶段的行为是相同的。因此,train()eval() 不会改变 LayerNorm 层的行为。

总结

  • train()eval() 主要影响 BatchNorm 层的行为,改变它使用的统计数据(训练时使用当前批次的统计数据,评估时使用全局统计数据)。
  • 对于 LayerNorm 层,train()eval() 不会产生任何影响,始终使用样本内部的均值和方差进行归一化。

英文版

In PyTorch, the switching between train() and eval() modes mainly affects the BatchNorm and Dropout layers, while it has little to no direct effect on the LayerNorm layer.

Differences between BatchNorm and LayerNorm and Specific Effects

  • BatchNorm : In training mode, BatchNorm uses the data statistics from the current batch to update model parameters, whereas in evaluation mode, it uses the global mean and variance accumulated during training. Therefore, the switch between train() and eval() significantly affects the behavior of BatchNorm, especially during inference when the model uses more stable statistics for predictions.

  • LayerNorm : Since LayerNorm does not depend on the mean and variance across batches, its behavior is the same during both training and inference. Thus, the switch between train() and eval() has no effect on the behavior of the LayerNorm layer.

Summary

  • The train() and eval() modes mainly affect the behavior of the BatchNorm layer by changing the statistics used (current batch statistics in training, global statistics during evaluation).
  • For the LayerNorm layer, there is no impact from train() and eval() modes, as it always uses the mean and variance within each sample for normalization.

后记

2024年12月25日17点45分于上海,在GPT4o大模型辅助下完成。

相关推荐
公链开发15 分钟前
从案例看AI如何支持链上预测市场:2026相关技术和开发建议
人工智能
技术宅星云15 分钟前
0x00.Spring AI Agent开发指南专栏简介
java·人工智能·spring
蝎蟹居18 分钟前
GBT 4706.1-2024逐句解读系列(29) 第7.9~7.10条款:开关,档位应明确标识
人工智能·单片机·嵌入式硬件·物联网·安全
甄心爱学习20 分钟前
Python 中 combinations 的详细用法
开发语言·python
说私域21 分钟前
基于定制开发AI智能名片商城小程序的运营创新与资金效率提升研究
大数据·人工智能·小程序
砚边数影21 分钟前
KingbaseES基础(二):SQL进阶 —— 批量插入/查询 AI 样本数据实战
java·数据库·人工智能·sql·ai
开开心心就好28 分钟前
内存清理工具开源免费,自动优化清理项
linux·运维·服务器·python·django·pdf·1024程序员节
Coder_Boy_33 分钟前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结 (2)
java·人工智能·spring boot·架构·serverless·ddd·服务网格
Coder_Boy_34 分钟前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解(2)
java·前端·数据库·人工智能·spring boot