Pytorch详解 train() 和 eval() 模式会影响Layer Norm吗?(中英双语)

train和eval会影响layernorm吗?

中文版

在 PyTorch 中,train()eval() 模式的切换主要影响的是 BatchNormDropout 层,而对 LayerNorm 层的影响较小,几乎没有直接的影响。

BatchNorm 和 LayerNorm 的区别

请参考笔者的另一篇博客:以[Today is great] [ How are you]两句话为例:学习Batch Norm和Layer Norm

具体影响

  • BatchNorm :在训练模式下,BatchNorm 会使用当前批次的数据统计来更新模型参数,而在评估模式下,它会使用在训练期间累计的均值和方差。因此,train()eval() 会显著影响 BatchNorm 的表现,尤其是在推理阶段,模型会使用更加稳定的统计数据进行推理。具体可以参考笔者的另一篇博客:Pytorch详解 train() 和 eval() 模式切换对 BatchNorm 层的影响:中英双语

  • LayerNormLayerNorm 不依赖于批次的均值和方差,它在训练和推理阶段的行为是相同的。因此,train()eval() 不会改变 LayerNorm 层的行为。

总结

  • train()eval() 主要影响 BatchNorm 层的行为,改变它使用的统计数据(训练时使用当前批次的统计数据,评估时使用全局统计数据)。
  • 对于 LayerNorm 层,train()eval() 不会产生任何影响,始终使用样本内部的均值和方差进行归一化。

英文版

In PyTorch, the switching between train() and eval() modes mainly affects the BatchNorm and Dropout layers, while it has little to no direct effect on the LayerNorm layer.

Differences between BatchNorm and LayerNorm and Specific Effects

  • BatchNorm : In training mode, BatchNorm uses the data statistics from the current batch to update model parameters, whereas in evaluation mode, it uses the global mean and variance accumulated during training. Therefore, the switch between train() and eval() significantly affects the behavior of BatchNorm, especially during inference when the model uses more stable statistics for predictions.

  • LayerNorm : Since LayerNorm does not depend on the mean and variance across batches, its behavior is the same during both training and inference. Thus, the switch between train() and eval() has no effect on the behavior of the LayerNorm layer.

Summary

  • The train() and eval() modes mainly affect the behavior of the BatchNorm layer by changing the statistics used (current batch statistics in training, global statistics during evaluation).
  • For the LayerNorm layer, there is no impact from train() and eval() modes, as it always uses the mean and variance within each sample for normalization.

后记

2024年12月25日17点45分于上海,在GPT4o大模型辅助下完成。

相关推荐
中杯可乐多加冰44 分钟前
【玩转OCR | 腾讯云智能结构化OCR应用探索和场景实践】
人工智能·深度学习·信息可视化·云计算·ocr·腾讯云·玩转腾讯云ocr
ROBOT玲玉1 小时前
PaddleOCROCR关键信息抽取训练过程
人工智能·ocr
Allen_LVyingbo2 小时前
Python 青铜宝剑十六维,破医疗数智化难关(上)
开发语言·笔记·python·健康医疗·集成学习
feifeikon4 小时前
机器学习DAY3续:逻辑回归、极大似然、梯度下降 (逻辑回归完)
人工智能·机器学习·逻辑回归
贝多财经4 小时前
高频生活场景带动低频金融服务,美团企业版点燃场景金融建设引擎
人工智能·金融·生活
重整旗鼓~5 小时前
1.flask介绍、入门、基本用法
python·flask
杜小白也想的美5 小时前
FlaskAPI-交互式文档与includ_router
python·fastapi
2401_887406575 小时前
搭建一个高效且安全的APP分发平台
python
百家方案5 小时前
「下载」“一机游”智慧旅游平台解决方案:智慧文旅4大应用8大特色,实现旅游监管、营销与服务的全面升级
大数据·人工智能·智慧文旅·智慧旅游
deephub6 小时前
SCOPE:面向大语言模型长序列生成的双阶段KV缓存优化框架
人工智能·深度学习·transformer·大语言模型·kv缓存