工程设计优化问题:改进海鸥算法(Matlab)

一、研究背景与问题

本文关注海鸥算法在求解最优化问题时存在的两大缺点:收敛速度慢和易陷入局部最优。这两个问题限制了海鸥算法在实际应用中的效果和效率。

二、改进方法

为了克服海鸥算法的上述缺点,本文提出了以下三个主要的改进方法:

融合Fuch混沌映射与精英反向学习策略来初始化海鸥种群

Fuch混沌映射:通过引入混沌映射,可以增加种群初始化的随机性和遍历性,使得种群能够更均匀地分布在搜索空间中,避免初始种群过于集中导致的早熟收敛。

精英反向学习策略:结合精英个体的反向解,可以进一步增加种群的多样性,提高找到全局最优解的可能性。

根据余弦函数改进自身行为的特征参数A

余弦函数:通过引入余弦函数来动态调整海鸥算法中自身行为的特征参数A,可以实现搜索过程的非线性化,增强算法的搜索能力和灵活性。

非线性搜索:与线性搜索相比,非线性搜索能够更好地适应复杂的搜索空间,提高算法的全局搜索能力。

加入莱维飞行机制增加海鸥飞行的随机性

莱维飞行:莱维飞行是一种具有长步长跳跃的随机游走方式,其步长分布具有重尾特性,能够更有效地探索远离当前位置的区域。

随机性增强:通过加入莱维飞行机制,可以增加海鸥飞行的随机性和探索性,进一步避免算法陷入局部最优。

三、实验结果

为了验证改进方法的有效性,本文进行了以下实验:

基准测试函数实验

测试函数:选择了9个经典的基准测试函数,这些函数涵盖了不同类型的优化问题,包括单峰、多峰和组合优化等。

比较算法:将I-SOA算法与标准SOA、PSO和GA算法进行比较。

实验结果:实验结果表明,I-SOA算法在寻优精度和收敛速度上均优于其他三种算法。特别是在求解f7和f9两个测试函数时,I-SOA算法均求得了理论最优解0。

工程设计优化问题实验

优化问题:选择了3个工程设计优化问题,这些问题具有实际应用背景,涉及结构、机械和控制系统等领域。

比较算法:同样将I-SOA算法与标准SOA算法进行比较,并参考了其他群智能优化算法的最优值。

实验结果:实验结果表明,I-SOA算法在寻优精度和收敛速度上均优于标准SOA算法。与其他群智能优化算法相比,I-SOA算法也表现出更强的适应性和稳定性。

四、结论

综上所述,通过融合Fuch混沌映射与精英反向学习策略、根据余弦函数改进特征参数A以及加入莱维飞行机制等改进方法,I-SOA算法在基准测试函数和工程设计优化问题中均表现出了优异的性能。这些实验结果不仅证实了海鸥算法改进的有效性,也为后续的研究和应用提供了有益的参考。

相关推荐
luckys.one4 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
~|Bernard|6 小时前
在 PyCharm 里怎么“点鼠标”完成指令同样的运行操作
算法·conda
战术摸鱼大师6 小时前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
Christo36 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
好家伙VCC7 小时前
数学建模模型 全网最全 数学建模常见算法汇总 含代码分析讲解
大数据·嵌入式硬件·算法·数学建模
liulilittle8 小时前
IP校验和算法:从网络协议到SIMD深度优化
网络·c++·网络协议·tcp/ip·算法·ip·通信
bkspiderx10 小时前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
星马梦缘11 小时前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
中华小当家呐11 小时前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸12 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试