【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
leo__5209 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体9 小时前
云厂商的AI决战
人工智能
njsgcs9 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派9 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch10 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中10 小时前
第1章 机器学习基础
人工智能·机器学习
wyw000010 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI10 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云201011 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲11 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程