【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
刘大猫.27 分钟前
XNMS项目-拓扑图展示
java·人工智能·算法·拓扑·拓扑图·节点树·xnms
TTGGGFF6 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
UXbot6 小时前
UI设计工具推荐合集
前端·人工智能·ui
kicikng6 小时前
智能体来了(西南总部)实战指南:AI调度官与AI Agent指挥官的Prompt核心逻辑
人工智能·prompt·多智能体系统
抓个马尾女孩6 小时前
为什么self-attention除以根号dk而不是其他值
人工智能·深度学习·机器学习·transformer
叫我辉哥e16 小时前
新手进阶Python:办公看板集成ERP跨系统同步+自动备份+AI异常复盘
开发语言·人工智能·python
Loo国昌6 小时前
【LangChain1.0】第五阶段:RAG高级篇(高级检索与优化)
人工智能·后端·语言模型·架构
伊克罗德信息科技6 小时前
技术分享 | 用Dify搭建个人AI知识助手
人工智能
TOPGUS6 小时前
谷歌发布三大AI购物新功能:从对话式搜索到AI代你下单
大数据·人工智能·搜索引擎·chatgpt·谷歌·seo·数字营销
Godspeed Zhao6 小时前
从零开始学AI4——背景知识3
人工智能