【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
喝拿铁写前端23 分钟前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
tongxianchao1 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维2 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!2 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左2 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE063 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲3 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE063 小时前
深度学习系列83:使用outetts
人工智能·深度学习
水中加点糖3 小时前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru
imbackneverdie3 小时前
如何用AI工具,把文献综述从“耗时费力”变成“高效产出”?
人工智能·经验分享·考研·自然语言处理·aigc·ai写作