【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
星爷AG I2 分钟前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术3 分钟前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python
递归尽头是星辰19 分钟前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
gihigo199822 分钟前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
min18112345635 分钟前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
20130924162739 分钟前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664551 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王1 小时前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络
梁辰兴1 小时前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
AI营销实验室1 小时前
AI营销破解券商获客难引领2026增长新范式
人工智能·microsoft