【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
Li emily5 小时前
成功接入A股实时行情API获取实时市场数据
人工智能·python·金融·fastapi
China_Yanhy5 小时前
转型AI运维工程师·Day 7:构建“数据飞轮” —— 每一句对话都是资产
运维·人工智能·状态模式
苍何5 小时前
爆肝 2 天,用 GLM5 开发了 OpenClaw 接入微信 bot,已开源!
人工智能
kuankeTech5 小时前
“数改智转”加速跑:外贸ERP助力钢铁智能工厂“提质增效”
大数据·人工智能·经验分享·软件开发·erp
澳鹏Appen5 小时前
澳鹏无锡成功获评国家高新技术企业
人工智能
threerocks5 小时前
前端将死,Agent 永生
前端·人工智能·ai编程
苍何6 小时前
偶然间发现一款逆天的 AI PPT 工具!免费生成!
人工智能
苍何6 小时前
Openclaw + OpenCode 才是 vibe coding 的最棒组合!
人工智能
AI360labs_atyun6 小时前
字节AI双王炸来了!Seedance 2.0 + Seedream 5.0
人工智能·科技·学习·百度·ai
AIMarketing6 小时前
2026 年 GEO 综合实力服务商推荐 行业研究与实践分析
人工智能