【深度学习】RNN循环神经网络的原理

sentiment analysis,根据评价来判断为好评还是差评。例如I hate this boring movie,每个单词都用一个张量[100]进行表示,整句话就可以用张量[5, 100]进行表示。每个单词经过线性层操作之后(w和b的shape为[100, 2]),与线性层相连接提取特征,抽取高层特征,会得到一个张量[2],经过加和计算可以得到张量[5, 2],进而得到概率值P(pos|x)判断评论的好坏属性。

但是这样的方法存在问题,当句子太长的时候,[w,b]的参数太多。这时候我们可以采用权值共享的方法,把所有的[w, b]用同一个值进行处理,这样会大大减少参数量。

而且没有一个上下语境信息,我们不能一个一个的单词进行处理,而需要看整体的句子,需要持续的协调一致的张量(consistent tensor),存储统一的语境信息。首先,初始化h0,第一个单词不仅输入输入的特征向量 "I",还输入初始值h0的特征向量;第二个单词,输入 "hate"的同时,也输入上一时刻的语境信息 h1;第三个单词,输入 "this"的同时,也输入上一时刻的语境信息 h2。

简化之后,可以得到如果输入特征为[5, 3, 100],一句话有5个单词,有三个句子batch,每个单词用100维的特征向量进表示,输入一句话的时候shape为[3, 100],然后进行不断自我更新,自我更新机制取决于上一时刻的输出和当前输入。

展开之后可以得到:

如何进行训练RNN呢?

相关推荐
脑海科技实验室6 分钟前
Nature子刊:新研究!人工智能提供更清晰的功能MRI脑数据
人工智能·fmri
qyr678922 分钟前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
yunhuibin35 分钟前
AlexNet网络学习
人工智能·python·深度学习·神经网络
算法黑哥43 分钟前
Sharpness-Aware Minimization (SAM,锐度感知最小化)是让损失曲面变平坦,还是引导参数至平坦区域
深度学习·神经网络·机器学习
肾透侧视攻城狮1 小时前
《从fit()到分布式训练:深度解锁TensorFlow模型训练全栈技能》
人工智能·深度学习·tensorflow 模型训练·模型训练中的fit方法·自定义训练循环·回调函数使用·混合精度/分布式训练
索木木1 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
DevilSeagull2 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理
破晓之翼2 小时前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能
njsgcs2 小时前
屏幕元素定位(Grounding) ollama两个模型
人工智能
码农杂谈00072 小时前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能