【pytorch】循环神经网络

如果说卷积神经网络可以有效地处理空间信息,那么循环神经网络则可以更好地处理序列信息。循环神经网络通过引入状态变量存储过去的信息和当前的输入,从而可以确定当前的输出。

1 循环神经网络

隐藏层和隐状态指的是两个截然不同的概念。隐藏层是在从输入到输出的路径上(以观测角度来理解)的隐藏的层,而隐状态则是

在给定步骤所做的任何事情(以技术角度来定义)的输入,并且这些状态只能通过先前时间步的数据来计算。

1.1 无隐状态的神经网络

让我们来看一看只有单隐藏层的多层感知机。设隐藏层的激活函数为ϕ,给定一个小批量样本X ∈ Rn×d,其中批量大小为n,输入维度为d,则隐藏层的输出H ∈ Rn×h通过下式计算:

隐藏层权重参数为Wxh ∈ Rd×h,偏置参数为bh ∈ R1×h,以及隐藏单元的数目为h

接下来,将隐藏变量H用作输出层的输入。输出层由下式给出:

O ∈ Rn×q是输出变量,Whq ∈ Rh×q是权重参数,bq ∈ R1×q是输出层的偏置参数

1.2 有隐状态的循环神经网络

假设我们在时间步t有小批量输入Xt ∈ Rn×d。换言之,对于n个序列样本的小批量,Xt的每一行对应于来自该序列的时间步t处的一个样本 。接下来,用Ht ∈ Rn×h 表示时间步t的隐藏变量。与多层感知机不同的是,我们在这里保存了前一个时间步的隐藏变量Ht−1,并引入了一个新的权重参数Whh ∈ Rh×h,来描述如何在当前时间步中使用前一个时间步的隐藏变量。具体地说,当前时间步隐藏变量由当前时间步的输入与前一个时间步的隐藏变量一起计算 得出:

从相邻时间步的隐藏变量Ht和 Ht−1之间的关系可知,这些变量捕获并保留了序列直到其当前时间步的历史信息,就如当前时间步下神经网络的状态或记忆,因此这样的隐藏变量被称为隐状态(hidden state)。

对于时间步t,输出层的输出类似于多层感知机中的计算:

隐藏层的权重 Wxh ∈ Rd×h, Whh ∈ Rh×h和偏置bh ∈ R1×h,以及输出层的权重Whq ∈ Rh×q 和偏置bq ∈ R1×q。

循环神经网络在三个相邻时间步的计算逻辑如下:

在任意时间步t,隐状态的计算可以被视为:

  1. 拼接当前时间步t的输入Xt和前一时间步t − 1的隐状态Ht−1;
  2. 将拼接的结果送入带有激活函数ϕ的全连接层。全连接层的输出是当前时间步t的隐状态Ht。
相关推荐
草莓熊Lotso33 分钟前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_2 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱4 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算