【pytorch】循环神经网络

如果说卷积神经网络可以有效地处理空间信息,那么循环神经网络则可以更好地处理序列信息。循环神经网络通过引入状态变量存储过去的信息和当前的输入,从而可以确定当前的输出。

1 循环神经网络

隐藏层和隐状态指的是两个截然不同的概念。隐藏层是在从输入到输出的路径上(以观测角度来理解)的隐藏的层,而隐状态则是

在给定步骤所做的任何事情(以技术角度来定义)的输入,并且这些状态只能通过先前时间步的数据来计算。

1.1 无隐状态的神经网络

让我们来看一看只有单隐藏层的多层感知机。设隐藏层的激活函数为ϕ,给定一个小批量样本X ∈ Rn×d,其中批量大小为n,输入维度为d,则隐藏层的输出H ∈ Rn×h通过下式计算:

隐藏层权重参数为Wxh ∈ Rd×h,偏置参数为bh ∈ R1×h,以及隐藏单元的数目为h

接下来,将隐藏变量H用作输出层的输入。输出层由下式给出:

O ∈ Rn×q是输出变量,Whq ∈ Rh×q是权重参数,bq ∈ R1×q是输出层的偏置参数

1.2 有隐状态的循环神经网络

假设我们在时间步t有小批量输入Xt ∈ Rn×d。换言之,对于n个序列样本的小批量,Xt的每一行对应于来自该序列的时间步t处的一个样本 。接下来,用Ht ∈ Rn×h 表示时间步t的隐藏变量。与多层感知机不同的是,我们在这里保存了前一个时间步的隐藏变量Ht−1,并引入了一个新的权重参数Whh ∈ Rh×h,来描述如何在当前时间步中使用前一个时间步的隐藏变量。具体地说,当前时间步隐藏变量由当前时间步的输入与前一个时间步的隐藏变量一起计算 得出:

从相邻时间步的隐藏变量Ht和 Ht−1之间的关系可知,这些变量捕获并保留了序列直到其当前时间步的历史信息,就如当前时间步下神经网络的状态或记忆,因此这样的隐藏变量被称为隐状态(hidden state)。

对于时间步t,输出层的输出类似于多层感知机中的计算:

隐藏层的权重 Wxh ∈ Rd×h, Whh ∈ Rh×h和偏置bh ∈ R1×h,以及输出层的权重Whq ∈ Rh×q 和偏置bq ∈ R1×q。

循环神经网络在三个相邻时间步的计算逻辑如下:

在任意时间步t,隐状态的计算可以被视为:

  1. 拼接当前时间步t的输入Xt和前一时间步t − 1的隐状态Ht−1;
  2. 将拼接的结果送入带有激活函数ϕ的全连接层。全连接层的输出是当前时间步t的隐状态Ht。
相关推荐
YF云飞20 小时前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
ningmengjing_20 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义21 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd21 小时前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan21 小时前
阿里云多模态大模型岗三面面经
人工智能
THMAIL21 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy21 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 天前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通1 天前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio1 天前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word