Golang 的AI 框架库

1. Gorgonia

特点: 类似于 TensorFlow 的 Go 深度学习框架,支持自动微分和计算图。

适用场景:

• 神经网络。

• 机器学习任务。

功能:

• 支持张量计算。

• 自动梯度计算。

• GPU 支持。

安装:

go get -u gorgonia.org/gorgonia

官网 : https://gorgonia.org/

2. Gonum

特点: 强大的数值计算库,适用于数学和科学计算。

适用场景:

• 数据分析和预处理。

• 数值优化。

功能:

• 矩阵和向量运算。

• 统计学和随机数生成。

• 插值和拟合。

安装:

go get -u gonum.org/v1/gonum/...

官网 : Gonum

3. GoML

特点: 简单易用的机器学习库,支持常见算法。

适用场景:

• 分类、回归。

• K-means 聚类。

安装:

go get -u github.com/cdipaolo/goml

GitHub : https://github.com/cdipaolo/goml

4. TensorFlow for Go

特点: TensorFlow 的 Go 绑定,适合加载和运行预训练模型。

适用场景:

• 部署深度学习模型。

• 推理任务。

安装:

go get github.com/tensorflow/tensorflow/tensorflow/go

5. Fuego

特点: 用于强化学习的 Go 库。

适用场景:

• 游戏 AI。

• 强化学习实验。

GitHub : https://github.com/schollz/fuego

6. EvoGo (EAopt)

特点: 进化算法框架,用于解决优化问题。

适用场景:

• 遗传算法。

• 复杂优化问题。

GitHub : https://github.com/MaxHalford/eaopt

7. go-deep

特点: 用于深度学习的简单库,支持前馈神经网络。

适用场景:

• 基础深度学习任务。

• 简单神经网络实现。

安装:

go get -u github.com/patrikeh/go-deep

8. Emergent

特点: 基于生物学原理的 AI 模拟框架。

适用场景:

• 神经网络仿真。

• 生物启发计算。

官网 : https://github.com/emer/emergent

9. MLGO

特点: 集成多种机器学习算法的库。

适用场景:

• 快速构建机器学习模型。

• 监督学习和无监督学习。

GitHub : https://github.com/nikolaydubina/mlgo

10. GoLearn

特点: 知名的机器学习库,类似于 Python 的 scikit-learn。

适用场景:

• 常见的机器学习算法。

• 数据集加载和预处理。

安装:

go get -u github.com/sjwhitworth/golearn

GitHub : https://github.com/sjwhitworth/golearn

相关推荐
禁默1 分钟前
第四届计算机、人工智能与控制工程
人工智能·控制工程
伊一大数据&人工智能学习日志2 分钟前
机器学习经典算法——逻辑回归
人工智能·算法·机器学习·逻辑回归
清弦墨客5 分钟前
【机器学习】交叉验证:数据世界的“多面侦探”
人工智能·python·机器学习
程序猿阿伟20 分钟前
《解密奖励函数:引导智能体走向最优策略》
人工智能
远洋录25 分钟前
Tailwind CSS 实战:表单设计与验证实现
前端·人工智能·react
AI完全体26 分钟前
【AI日记】25.01.03 kaggle 比赛 3-2 未来的命运
人工智能·机器学习·读书·kaggle 比赛
猫头不能躺31 分钟前
【pytorch】现代循环神经网络-2
人工智能·pytorch·rnn
AI345639 分钟前
壁纸样机神器,适合初学者使用吗?
人工智能·智能手机
远洋录41 分钟前
Tailwind CSS 实战:性能优化最佳实践
前端·人工智能·react
我明天再来学Web渗透1 小时前
【2024年-11月-9日-开源社区openEuler实践记录】OpenAMDC:开启智能边缘计算与系统管控的新征程
开发语言·人工智能·架构·开源·边缘计算·copilot·开源软件