Golang 的AI 框架库

1. Gorgonia

特点: 类似于 TensorFlow 的 Go 深度学习框架,支持自动微分和计算图。

适用场景:

• 神经网络。

• 机器学习任务。

功能:

• 支持张量计算。

• 自动梯度计算。

• GPU 支持。

安装:

复制代码
go get -u gorgonia.org/gorgonia

官网 : https://gorgonia.org/

2. Gonum

特点: 强大的数值计算库,适用于数学和科学计算。

适用场景:

• 数据分析和预处理。

• 数值优化。

功能:

• 矩阵和向量运算。

• 统计学和随机数生成。

• 插值和拟合。

安装:

复制代码
go get -u gonum.org/v1/gonum/...

官网 : Gonum

3. GoML

特点: 简单易用的机器学习库,支持常见算法。

适用场景:

• 分类、回归。

• K-means 聚类。

安装:

复制代码
go get -u github.com/cdipaolo/goml

GitHub : https://github.com/cdipaolo/goml

4. TensorFlow for Go

特点: TensorFlow 的 Go 绑定,适合加载和运行预训练模型。

适用场景:

• 部署深度学习模型。

• 推理任务。

安装:

复制代码
go get github.com/tensorflow/tensorflow/tensorflow/go

5. Fuego

特点: 用于强化学习的 Go 库。

适用场景:

• 游戏 AI。

• 强化学习实验。

GitHub : https://github.com/schollz/fuego

6. EvoGo (EAopt)

特点: 进化算法框架,用于解决优化问题。

适用场景:

• 遗传算法。

• 复杂优化问题。

GitHub : https://github.com/MaxHalford/eaopt

7. go-deep

特点: 用于深度学习的简单库,支持前馈神经网络。

适用场景:

• 基础深度学习任务。

• 简单神经网络实现。

安装:

复制代码
go get -u github.com/patrikeh/go-deep

8. Emergent

特点: 基于生物学原理的 AI 模拟框架。

适用场景:

• 神经网络仿真。

• 生物启发计算。

官网 : https://github.com/emer/emergent

9. MLGO

特点: 集成多种机器学习算法的库。

适用场景:

• 快速构建机器学习模型。

• 监督学习和无监督学习。

GitHub : https://github.com/nikolaydubina/mlgo

10. GoLearn

特点: 知名的机器学习库,类似于 Python 的 scikit-learn。

适用场景:

• 常见的机器学习算法。

• 数据集加载和预处理。

安装:

复制代码
go get -u github.com/sjwhitworth/golearn

GitHub : https://github.com/sjwhitworth/golearn

相关推荐
MYH51633 分钟前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊40 分钟前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin3 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮3 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻3 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑3 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love3 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
A林玖3 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
Jamence3 小时前
多模态大语言模型arxiv论文略读(108)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao3 小时前
双空间知识蒸馏用于大语言模型
人工智能·语言模型·自然语言处理