我的线代观-秩(向量,矩阵)

都说秩是线代中不可避免的一环,当然,它其中最重要的一环。

我在学习线代之后,也有这种感受,它有着一种很绕的感受。

1.矩阵中

在矩阵中,它的秩是怎么定义的呢。它常常与行列式扯上关系,我们拿三阶矩阵为例。

若它的三阶行列式为零,但它的二阶行列式中有一个不为零,则说明,该三阶矩阵的秩为零。

当然,矩阵有着不同的形式,如有的矩阵是6x7阶的矩阵,说明该矩阵的秩最多最多为6,而不可能为7,为什么?因为他不可能构成7阶行列式来寻找行列式是否为零。如果6阶子式全为0,那我们就去看5阶子式是否有为0,若有五阶子式有一个不为零,那么秩就是五。

好了,以上就是矩阵秩的初步定义

1.1满秩

首先这个矩阵一定是要方的,其次,它的行列式不为零,则我们说它满秩。

1.2不满秩

同理,但是它的行列式是为零的。说明它不满秩序。

2.向量中

在向量中,秩是极为复杂的,因为它牵扯到了许多其他概念。

2.1线性无关

什么是线性无关呢,一组向量组中,

此时,我们说明该组向量组是线性无关的。

2.2线性相关

该方程说明该向量组是线性相关的。

2.3整体与局部

在整体和局部中我们有着

局部相关-----整体相关

整体无关-----局部无关

2.4极大无关组

即在一组向量组中,有那么一小组中的向量是线性无关的,但是这一组向量却能表示所有的向量,我们称这几个向量是极大无关组。

2.5向量的秩

我们定义向量的秩就是等于极大无关组,当然我们也可以将向量写成矩阵,用矩阵的方法来求解秩。

如果发现不管用矩阵还是极大无关组来求秩,我们都十分麻烦的话,我们就用向量化成矩阵,再对矩阵进行化简,化简成最简矩阵,此时它的阶梯口就是对应的极大无关组,

相关推荐
CreasyChan38 分钟前
unity矩阵与变换 - “空间转换的魔术”
unity·矩阵·c#·游戏引擎
Leweslyh2 小时前
线性时不变系统传递函数矩阵的状态空间实现理论及其多重性机理研究
线性代数·矩阵
iAkuya18 小时前
(leetcode)力扣100 19螺旋矩阵(方向数组/边界把控)
算法·leetcode·矩阵
闻缺陷则喜何志丹2 天前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
闻缺陷则喜何志丹2 天前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
iAkuya2 天前
(leetcode)力扣100 18矩阵置零(哈希)
leetcode·矩阵·哈希算法
点云侠2 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
c#上位机2 天前
halcon计算仿射变换矩阵的逆矩阵
计算机视觉·矩阵·c#
拾贰_C3 天前
【Linear Mathematics | 线性代数 | Matrix Theory |矩阵论】RREF的Pivot(主元)是什么?怎么找主元?
线性代数·矩阵
拼命鼠鼠4 天前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划