F.interpolate函数

F.interpolate 是 PyTorch 中用于对张量(通常是图像数据)进行插值操作的函数,常用于调整张量的大小,例如改变图像的分辨率。它支持多种插值方法,包括最近邻插值、双线性插值和三次插值等。

语法

python 复制代码
torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)

参数

  1. input:

    • 输入的张量,形状通常为 (N, C, H, W)(N, C, D, H, W)(批次、通道数、高度、宽度 或深度、高度、宽度)。
  2. size:

    • 调整后张量的目标大小,可以是整数元组,例如 (height, width)
    • 优先级高于 scale_factor
  3. scale_factor:

    • 用于调整大小的比例因子,可以是浮点数或元组(对于高度和宽度分别指定比例)。
    • 如果指定了 size,此参数会被忽略。
  4. mode:

    • 指定插值方法,常用选项:
      • 'nearest':最近邻插值。
      • 'linear':线性插值(仅适用于 3D 输入)。
      • 'bilinear':双线性插值(常用于 2D 图像)。
      • 'bicubic':双三次插值(适用于 2D 图像)。
      • 'trilinear':三线性插值(适用于 3D 输入)。
      • 'area':区域插值,用于下采样。
  5. align_corners:

    • 仅在 mode'linear', 'bilinear', 'bicubic''trilinear' 时使用。
    • 如果为 True,则输入和输出的角像素对齐。

返回值

调整大小后的张量。


示例代码

1. 将图像从 640x640 调整为 832x832
python 复制代码
import torch
import torch.nn.functional as F

# 创建一个随机图像张量,形状为 (batch_size=1, channels=3, height=640, width=640)
img = torch.randn(1, 3, 640, 640)

# 使用 F.interpolate 调整分辨率为 832x832
resized_img = F.interpolate(img, size=(832, 832), mode='bilinear', align_corners=False)

print("Original shape:", img.shape)
print("Resized shape:", resized_img.shape)
2. 使用比例调整图像大小
python 复制代码
# 使用 scale_factor=1.3 对图像尺寸放大 1.3 倍
scaled_img = F.interpolate(img, scale_factor=1.3, mode='bilinear', align_corners=False)

print("Scaled shape:", scaled_img.shape)
3. 下采样为一半大小
python 复制代码
# 使用 scale_factor=0.5 对图像尺寸缩小 50%
downsampled_img = F.interpolate(img, scale_factor=0.5, mode='area')

print("Downsampled shape:", downsampled_img.shape)

注意事项

  1. align_corners 的影响

    align_corners=True 时,插值会在输入和输出张量的角像素之间进行对齐;否则,计算比例时不对齐角像素。通常推荐 align_corners=False,避免形变或偏移。

  2. 选择插值方法

    • 双线性插值(bilinear)和双三次插值(bicubic)通常适用于图像重采样,生成更平滑的结果。
    • 最近邻插值(nearest)速度快,但结果不够平滑。
  3. 处理多通道输入
    F.interpolate 可直接处理多通道(如 RGB、IR 数据)的张量,不需要额外操作。

相关推荐
【建模先锋】1 小时前
精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测
深度学习·预测模型·pinn·锂电池剩余寿命预测·锂电池数据集·剩余寿命
九年义务漏网鲨鱼1 小时前
【大模型学习】现代大模型架构(二):旋转位置编码和SwiGLU
深度学习·学习·大模型·智能体
CoovallyAIHub1 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
云雾J视界2 小时前
AI芯片设计实战:用Verilog高级综合技术优化神经网络加速器功耗与性能
深度学习·神经网络·verilog·nvidia·ai芯片·卷积加速器
噜~噜~噜~10 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理
小女孩真可爱12 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
水月wwww15 小时前
深度学习——神经网络
人工智能·深度学习·神经网络
青瓷程序设计16 小时前
花朵识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
青瓷程序设计17 小时前
鱼类识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
WWZZ202517 小时前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能