数据结构与算法之动态规划: LeetCode 3105. 最长的严格递增或递减子数组 (Ts版)

最长的严格递增或递减子数组

描述

  • 给你一个整数数组 nums
  • 返回数组 nums 中 严格递增 或 严格递减的最长非空子数组的长度

示例 1

复制代码
输入:nums = [1,4,3,3,2]
输出:2
  • 解释:
    • nums 中严格递增的子数组有[1]、[2]、[3]、[3]、[4] 以及 [1,4]
    • nums 中严格递减的子数组有[1]、[2]、[3]、[3]、[4]、[3,2] 以及 [4,3]
    • 因此,返回 2

示例 2

复制代码
输入:nums = [3,3,3,3]
输出:1
  • 解释:
    • nums 中严格递增的子数组有 [3]、[3]、[3] 以及 [3]
    • nums 中严格递减的子数组有 [3]、[3]、[3] 以及 [3]
    • 因此,返回 1

示例 3

复制代码
输入:nums = [3,2,1]
输出:3
  • 解释:
    • nums 中严格递增的子数组有 [3]、[2] 以及 [1]
    • nums 中严格递减的子数组有 [3]、[2]、[1]、[3,2]、[2,1] 以及 [3,2,1]
    • 因此,返回 3

提示

1 <= nums.length <= 50

1 <= nums[i] <= 50

Typescript 版算法实现

1 ) 方案1: 分组循环

ts 复制代码
function longestMonotonicSubarray(a: number[]): number {
    let ans = 1;
    let i = 0, n = a.length;

    while (i < n - 1) {
        if (a[i + 1] === a[i]) {
            i++; // 直接跳过
            continue;
        }

        const i0 = i; // 记录这一组的开始位置
        const inc = a[i + 1] > a[i]; // 定下基调:是严格递增还是严格递减
        i += 2; // i 和 i+1 已经满足要求,从 i+2 开始判断

        while (i < n && a[i] !== a[i - 1] && (a[i] > a[i - 1]) === inc) {
            i++;
        }

        // 从 i0 到 i-1 是满足题目要求的(并且无法再延长的)子数组
        ans = Math.max(ans, i - i0);
        i--; // 回退一步以确保循环可以正确处理下一个元素
    }

    return ans;
}

2 ) 方案2: 分组循环优化版

ts 复制代码
function longestMonotonicSubarray(nums: number[]): number {
    const n = nums.length * 2;
    let i = 0, ans = 0;
    const doubledNums = [...nums, ...nums.reverse()]; // 拼接原数组和其反转

    while (i < n) {
        const st = i;
        i += 1;

        // 查找连续递增序列
        while (i < n && doubledNums[i] > doubledNums[i - 1]) {
            i += 1;
        }

        ans = Math.max(ans, i - st);
    }

    return ans;
}

3 ) 方案3: 动态规划

ts 复制代码
function longestMonotonicSubarray(nums: number[]): number {
    let dp0 = 1, dp1 = 1, len = 1, n = nums.length;
    // dp0 表示以当前元素为结尾的递增子数组的长度,dp1 表示以当前元素为结尾的递减子数组的长度
    for (let i = 1; i < n; i++) {
        dp0 = nums[i] > nums[i - 1] ? dp0 + 1 : 1;
        dp1 = nums[i] < nums[i - 1] ? dp1 + 1 : 1;
        len = Math.max(len, Math.max(dp0, dp1));
    }
    return len;
}
相关推荐
焦耳加热1 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
wan5555cn1 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u6061 小时前
常用排序算法核心知识点梳理
算法·排序
蒋星熠4 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油4 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream4 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL4 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
空白到白5 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
索迪迈科技5 小时前
java后端工程师进修ing(研一版 || day40)
java·开发语言·学习·算法
zzzsde5 小时前
【数据结构】队列
数据结构·算法