数据结构与算法之动态规划: LeetCode 3105. 最长的严格递增或递减子数组 (Ts版)

最长的严格递增或递减子数组

描述

  • 给你一个整数数组 nums
  • 返回数组 nums 中 严格递增 或 严格递减的最长非空子数组的长度

示例 1

复制代码
输入:nums = [1,4,3,3,2]
输出:2
  • 解释:
    • nums 中严格递增的子数组有[1]、[2]、[3]、[3]、[4] 以及 [1,4]
    • nums 中严格递减的子数组有[1]、[2]、[3]、[3]、[4]、[3,2] 以及 [4,3]
    • 因此,返回 2

示例 2

复制代码
输入:nums = [3,3,3,3]
输出:1
  • 解释:
    • nums 中严格递增的子数组有 [3]、[3]、[3] 以及 [3]
    • nums 中严格递减的子数组有 [3]、[3]、[3] 以及 [3]
    • 因此,返回 1

示例 3

复制代码
输入:nums = [3,2,1]
输出:3
  • 解释:
    • nums 中严格递增的子数组有 [3]、[2] 以及 [1]
    • nums 中严格递减的子数组有 [3]、[2]、[1]、[3,2]、[2,1] 以及 [3,2,1]
    • 因此,返回 3

提示

1 <= nums.length <= 50

1 <= nums[i] <= 50

Typescript 版算法实现

1 ) 方案1: 分组循环

ts 复制代码
function longestMonotonicSubarray(a: number[]): number {
    let ans = 1;
    let i = 0, n = a.length;

    while (i < n - 1) {
        if (a[i + 1] === a[i]) {
            i++; // 直接跳过
            continue;
        }

        const i0 = i; // 记录这一组的开始位置
        const inc = a[i + 1] > a[i]; // 定下基调:是严格递增还是严格递减
        i += 2; // i 和 i+1 已经满足要求,从 i+2 开始判断

        while (i < n && a[i] !== a[i - 1] && (a[i] > a[i - 1]) === inc) {
            i++;
        }

        // 从 i0 到 i-1 是满足题目要求的(并且无法再延长的)子数组
        ans = Math.max(ans, i - i0);
        i--; // 回退一步以确保循环可以正确处理下一个元素
    }

    return ans;
}

2 ) 方案2: 分组循环优化版

ts 复制代码
function longestMonotonicSubarray(nums: number[]): number {
    const n = nums.length * 2;
    let i = 0, ans = 0;
    const doubledNums = [...nums, ...nums.reverse()]; // 拼接原数组和其反转

    while (i < n) {
        const st = i;
        i += 1;

        // 查找连续递增序列
        while (i < n && doubledNums[i] > doubledNums[i - 1]) {
            i += 1;
        }

        ans = Math.max(ans, i - st);
    }

    return ans;
}

3 ) 方案3: 动态规划

ts 复制代码
function longestMonotonicSubarray(nums: number[]): number {
    let dp0 = 1, dp1 = 1, len = 1, n = nums.length;
    // dp0 表示以当前元素为结尾的递增子数组的长度,dp1 表示以当前元素为结尾的递减子数组的长度
    for (let i = 1; i < n; i++) {
        dp0 = nums[i] > nums[i - 1] ? dp0 + 1 : 1;
        dp1 = nums[i] < nums[i - 1] ? dp1 + 1 : 1;
        len = Math.max(len, Math.max(dp0, dp1));
    }
    return len;
}
相关推荐
_Coin_-19 小时前
算法训练营DAY60 第十一章:图论part11
算法·图论
林木辛20 小时前
LeetCode热题 438.找到字符中所有字母异位词 (滑动窗口)
算法·leetcode
和鲸社区20 小时前
四大经典案例,入门AI算法应用,含分类、回归与特征工程|2025人工智能实训季初阶赛
人工智能·python·深度学习·算法·机器学习·分类·回归
dragoooon3420 小时前
[优选算法专题二——NO.16最小覆盖子串]
c++·算法·leetcode·学习方法
点云SLAM20 小时前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
汉克老师20 小时前
第十四届蓝桥杯青少组C++选拔赛[2023.1.15]第二部分编程题(4 、移动石子)
c++·算法·蓝桥杯·蓝桥杯c++·c++蓝桥杯
Athenaand21 小时前
代码随想录算法训练营第62天 | Floyd 算法精讲、A * 算法精讲 (A star算法)、最短路算法总结篇、图论总结
算法·图论
qq_4335545421 小时前
C++ Dijkstra堆优化算法
开发语言·c++·算法
楼田莉子1 天前
C++动态规划算法:斐波那契数列模型
c++·学习·算法·动态规划
1373i1 天前
【Python】通俗理解反向传播
深度学习·算法·机器学习