数据挖掘——神经网络分类

神经网络分类

神经网络分类

人工神经网络

人工神经网络主要由大量的神经元以及它们之间的有向连接构成。包含三个方面:

  1. 神经元的激活规则
    • 主要是指神经元输入到输出之间的映射关系,一般为非线性函数
  2. 网络的拓扑结构
    • 不同神经元之间的连接关系。
  3. 学习算法
    • 通过训练数据来学习神经网络的参数。

多层人工神经网络

人工神经网络比感知机模型复杂
输入层和输出层之间包含隐藏层

激活函数可以是多种函数

比较常见的有ReLU和Logistic函数

误差反向传播(BP)网络

激活函数

  • 必须处处可导
    • 一般都使用S型函数

使用S型激活函数时BP网络输入与输出关系

学习的类型:监督式学习

核心思想:

将输出误差以某种形式 通过隐层向输入层逐层反传

学习的过程

  • 信号的正向传播
  • 误差的反向传播

后向传播算法

初始化权重:循环以下两步,直到满足条件

  1. 向前传播输入
    在每个节点加权求和,再代入激活函数
  2. 向后传播误差

后向传播BP网络注意事项

初始值选择

  • 权值向量以及阀值的初始值应设定在一均匀分布的小范围内
  • 初始值不能为零 ,否则性能曲面会趋向于鞍点
  • 初始值不能太大,否则远离优化点,导致性能曲面平坦,学习率很慢

训练样本输入次序

  • 不同,也会造成不一样的学习结果
  • 在每一次的学习循环中,输入向量输入网络的次序应使其不同

BP算法的学习过程的终止条件

  • 权值向量的梯度 < 给定值
  • 均方误差值 < 给定误差容限值
  • 若其推广能力达到目标则予终止
  • 可以结合上述各种方式
相关推荐
cxr8285 分钟前
五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的开源库 (二)
人工智能·深度学习
魔理沙偷走了BUG9 分钟前
【AI数学基础】线性代数:内积和范数
人工智能·线性代数·机器学习
salsm32 分钟前
使用 C++ 和函数式编程构建高效的 AI 模型
c++·人工智能
IT古董42 分钟前
【机器学习】机器学习的基本分类-自监督学习-生成式方法(Generative Methods)
学习·机器学习·分类
qq_273900231 小时前
pytorch torch.scatter_reduce函数介绍
人工智能·pytorch·python
MediaTea1 小时前
Ae 效果详解:放大
图像处理·人工智能·深度学习·计算机视觉
小码贾1 小时前
OpenCV-Python实战(15)——像素直方图均衡画
人工智能·python·opencv
网易智企2 小时前
游戏社交趋势下,游戏语音再升级!
人工智能·游戏·音视频·语音识别·实时音视频·信息与通信·通信
自动驾驶小白说2 小时前
【清华&理想】GaussianAD: Gaussian-Centric 高思中心端到端自动驾驶
人工智能·机器学习·自动驾驶
自不量力的A同学2 小时前
如何利用人工智能算法优化知识分类和标签?
人工智能·算法·分类