[paddle] 非线性拟合问题的训练

利用paddlepaddle建立神经网络,模拟有限个数据的非线性拟合

本文仍然考虑 f ( x ) = sin ⁡ ( x ) x f(x)=\frac{\sin(x)}{x} f(x)=xsin(x) 函数在区间 [-10,10] 上固定数据的拟合。

python 复制代码
import paddle
import paddle.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子以确保结果的可重复性
paddle.seed(1)

# 生成数据集
x_data = (np.random.rand(500) * 20 - 10).astype('float32')  # 生成500个随机x值,范围在-10到10之间
y_data = np.sin(x_data) / x_data  # 生成y值
y_data = y_data.reshape(-1, 1)  # 将y_data转换为二维数组

# 定义模型,一个具有2个隐藏层的多层感知器
class MyModel(nn.Layer):
    def __init__(self):
        super(MyModel, self).__init__()
        self.hidden1 = nn.Linear(in_features=1, out_features=50)
        self.bn = nn.BatchNorm1D(num_features=50)
        self.hidden2 = nn.Linear(in_features=50, out_features=1)

    def forward(self, x):
        x = paddle.tanh(self.hidden1(x))
        x = self.bn(x)
        x = self.hidden2(x)
        return x

model = MyModel()

# 定义损失函数
loss_fn = nn.MSELoss()

# 设置优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())

# 训练数据
train_data = paddle.to_tensor(x_data).unsqueeze(-1), paddle.to_tensor(y_data)

# 训练模型
epochs = 1000
for epoch in range(1, epochs + 1):
    loss = loss_fn(model(train_data[0]), train_data[1])
    loss.backward()
    optimizer.step()
    optimizer.clear_grad()
    if epoch % 100 == 0:
        print(f'Epoch {epoch}: Loss = {loss.numpy()}')

# 使用训练好的模型进行预测
y_pred = model(train_data[0]).numpy()

# 可视化结果
plt.scatter(x_data, y_data, label='True')
plt.scatter(x_data, y_pred, label='Predicted')
plt.legend()
plt.show()
相关推荐
a1117761 天前
医院挂号预约系统(开源 Fastapi+vue2)
前端·vue.js·python·html5·fastapi
0思必得01 天前
[Web自动化] Selenium处理iframe和frame
前端·爬虫·python·selenium·自动化·web自动化
摘星编程1 天前
OpenHarmony + RN:Calendar日期选择功能
python
Yvonne爱编码1 天前
JAVA数据结构 DAY3-List接口
java·开发语言·windows·python
一方_self1 天前
了解和使用python的click命令行cli工具
开发语言·python
小芳矶1 天前
Dify本地docker部署踩坑记录
python·docker·容器
万事ONES1 天前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
2301_822366351 天前
使用Scikit-learn构建你的第一个机器学习模型
jvm·数据库·python
renhongxia11 天前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
小郎君。1 天前
【无标题】
python