《深入浅出HTTPS》读书笔记(24):椭圆曲线密码学

《深入浅出HTTPS​​​​​​​​​​》读书笔记(24):椭圆曲线密码学

为了保证DH的密钥对不被破解,提升安全性的主要手段就是增加密钥对的长度,但是长度越长,性能越低。

为了解决性能问题,需要了解下椭圆曲线密码学(Elliptic Curve Cryptography),简称为ECC。

ECC是新一代的公开密钥算法,主要的优点就是安全性,极短的密钥能够提供很大的安全性。

ECC算法的优势就是性能和安全性非常高。

【ECC算法的基本模型】

ECC是比离散对数类算法(比如RSA和DH算法)更复杂的算法。ECC椭圆曲线由很多点组成,这些点由特定的方程式组成的。

椭圆曲线有个特点,任意两个点能够得到这条椭圆曲线上的另外一点,这个操作称为打点,经过多次(比如n次)打点后,能够生成一个最终点(F)。

ECC密码学的关键点就在于就算知道具体方程式、基点(G)、最终点(F),也无法知晓一共打点了多少次(n),这就是椭圆曲线的关键,很难破解打点过程。

椭圆曲线的关键点就是方程式。

必须把所有的操作数限制在一个有限域中,为了控制在有限域中,需要一个很大的质数(p),而这个曲线上的点都必须小于这个质数。

ECC由方程式、基点(G)、质数(P)组成,当然还有a、b这样的方程式参数。

为了安全,系统预先定义了一系列的曲线,称为命名曲线(name curve),比如secp256k1就是一个命名曲线。

相关推荐
ada7_17 分钟前
LeetCode(python)——148.排序链表
python·算法·leetcode·链表
点云SLAM27 分钟前
点云配准算法之-Voxelized GICP(VGICP)算法
算法·机器人·gpu·slam·点云配准·vgicp算法·gicp算法
牛奶咖啡1330 分钟前
解决配置虚拟网络后同网段的设备网络不通问题
网络·桥接模式·主机模式·配置虚拟网络后同网段设备不通·排查解决同网段同网关网络不通·重置windows主机网络·nas模式
车载测试工程师1 小时前
CAPL学习-ETH功能函数-通用函数
网络·学习·tcp/ip·capl·canoe
ICT技术最前线1 小时前
sdwan组网软件如何帮助企业提升网络效率?
网络·sdwan·宽带组网
资深web全栈开发2 小时前
LeetCode 3625. 统计梯形的数目 II
算法·leetcode·组合数学
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——外观数列
算法·leetcode·职场和发展·结构与算法
Liangwei Lin2 小时前
洛谷 P1434 [SHOI2002] 滑雪
算法
老蒋新思维2 小时前
创客匠人洞察:AI 时代 IP 变现的认知重构,从流量焦虑到价值深耕的破局之道
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
c#上位机2 小时前
halcon图像增强之自动灰度拉伸
图像处理·算法·c#·halcon·图像增强