自动驾驶控制算法-油门刹车标定

本文是学习自动驾驶控制算法第十讲 油门刹车标定表的制作以及后续一节的学习笔记。

车辆油门刹车标定的目的是获取不同车速下不同的油门踏板或刹车踏板行程下车辆的加速度,标定的结果作为纵向控制模型的输入,用于计算输出合理的油门或刹车。

1 Apollo中的油门刹车标定

Apollo里的标定条件:

  • 速度条件
    • 低速 0 ~ 10m/s
    • 中速 10 ~ 20m/s
    • 高速 >= 20m/s
  • 油门条件
    • 小油门 Throttle deadzone ~ 25%
    • 中油门 25% ~ 30%
    • 大油门 Throttle >= 30%
  • 刹车条件
    • 小刹车 Brake deadzone ~ 20%
    • 中刹车 20% ~ 25%
    • 急刹车 Brake >= 25%

标定结果示意:

bash 复制代码
calibration {
  speed: 4.4
  acceleration: 3.19
  command: 80.0
}
calibration {
  speed: 4.4
  acceleration: 3.21
  command: 75.0
}
calibration {
  speed: 4.6
  acceleration: -8.79
  command: -35.0
}
calibration {
  speed: 4.6
  acceleration: -7.43
  command: -33.0
}

油门和刹车的拟合示意图如下:

2 油门标定

视频中采用Carsim+matlab仿真来演示油门和刹车的标定。

参照如上视频设置好Carsim,使用如下matlab代码仿真得到不同油门开度下的 v a va va数据并拟合:

matlab 复制代码
thr = 0;  %油门开度
for i = 1:11
    sim('long_calibration');
    v_temp(:,i)=ans.vx.data;
    a_temp(:,i)=ans.ax.data;
    thr_temp(:,i)=ones(length(ans.vx.data),1)*thr;
    thr=thr+0.1;
end

%转换为行向量
v=v_temp(:,1)';
a=a_temp(:,1)';
tr=thr_temp(:,1)';
for i = 2:11
    v=[v,v_temp(:,i)'];
    a=[a,a_temp(:,i)'];
    tr=[tr,thr_temp(:,i)'];
end

F=scatteredInterpolant(v',a',tr'); %拟合
vu=0:0.1:50;
au=0:0.1:5;
table=zeros(length(vu),length(au));
for i = 1:length(vu)
    for j=1:length(au)
        table(i,j)=F(vu(i),au(j));
    end
end

不同油门下速度、加速度数据示意图如下:

再根据得到的 v a va va数据拟合如下函数
T h r o t t l e = f ( v , a ) \begin{equation} Throttle=f(v,a) \end{equation} Throttle=f(v,a)

拟合结果示意图如下:

3 刹车标定

同样的方式得到不同刹车制动压力下的 v a va va数据,仿真初始车速是50m/s,注意当车速为0时不论刹车踏板值是多少车辆减速度都是0,所以针对车速为0的结果要做一下人工处理,比如手动赋值一个比较小的值。为确保连续性,可以直接将车速较低的结果直接复制过来。

matlab 复制代码
brake = 0.1;  %制动压力
for i=1:80 
    sim('long_calibration');
    v_brake(:,i)=ans.vx.data;
    a_brake(:,i)=ans.ax.data;
    brake_temp(:,i)=ones(length(ans.vx.data),1)*brake;
    brake=brake+0.1;
end

%转换为行向量
vbr=v_brake(:,1)';
abr=a_brake(:,1)';
br=brake_temp(:,1)';
for i=2:80
    vbr=[vbr,v_brake(:,i)'];
    abr=[abr,a_brake(:,i)'];
    br=[br,brake_temp(:,i)'];
end


Fbr=scatteredInterpolant(vbr',abr',br'); %拟合
vubr=0:0.05:50;
aubr=-8:0.05:0;
tablebr=zeros(length(vubr),length(aubr));
for i = 1:length(vubr)
    for j=1:length(aubr)
        tablebr(i,j)=Fbr(vubr(i),aubr(j));
    end
end

不同刹车下速度、加速度数据示意图如下:

4 油门刹车一张表

油门刹车一起拟合,控制会更连续:

matlab 复制代码
%加速和制动的数据放到一起
v2=[v,vbr];
a2=[a,abr];
br2=[tr,br];

F=scatteredInterpolant(v2',a2',br2'); %一起拟合
vubr=0:0.05:50;
aubr=-8:0.05:5;
tablebr=zeros(length(vubr),length(aubr));
for i=1:length(vubr)
    for j=1:length(aubr)
        tablebr(i,j)=F(vubr(i),aubr(j));
    end
end

不同油门、刹车下速度、加速度数据示意图如下:

5 纵向控制仿真

参考视频搭建如下的仿真模型,使用双PID控制模块控制车辆跟随预先设定的轨迹:

仿真结果如下,蓝色曲线是预设的轨迹,黄色是控制结果,最后面的是车速小于0了,可忽略:

位置:

速度:

加速度

相关推荐
闲看云起11 分钟前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
小麦矩阵系统永久免费26 分钟前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵
新加坡内哥谈技术27 分钟前
Chrome的“无处不在”与推动Web平台演进的使命
人工智能
kailp37 分钟前
突破效率与质量边界:深入解析MiniMax-Remover视频物体移除方案
人工智能·ai·大模型·gpu算力·图片渲染
超人不会飛42 分钟前
vue3 markdown组件|大模型应用专用
前端·vue.js·人工智能
虫无涯1 小时前
Doc2X为一切AI文档服务的基础设施,将PDF转换为Word、HTML、LaTeX、Markdown等
人工智能
倔强的石头1061 小时前
卷积神经网络(CNN):从图像识别原理到实战应用的深度解析
人工智能·神经网络·cnn
爆改模型1 小时前
【ICCV2025】计算机视觉|即插即用|ESC:颠覆Transformer!超强平替,ESC模块性能炸裂!
人工智能·计算机视觉·transformer
虫无涯1 小时前
一种专为AI代理设计的内存层,能够在交互过程中记忆、学习和进化
人工智能
AI 嗯啦1 小时前
计算机视觉opencv----银行卡号码识别
人工智能·opencv·计算机视觉