自动驾驶控制算法-油门刹车标定

本文是学习自动驾驶控制算法第十讲 油门刹车标定表的制作以及后续一节的学习笔记。

车辆油门刹车标定的目的是获取不同车速下不同的油门踏板或刹车踏板行程下车辆的加速度,标定的结果作为纵向控制模型的输入,用于计算输出合理的油门或刹车。

1 Apollo中的油门刹车标定

Apollo里的标定条件:

  • 速度条件
    • 低速 0 ~ 10m/s
    • 中速 10 ~ 20m/s
    • 高速 >= 20m/s
  • 油门条件
    • 小油门 Throttle deadzone ~ 25%
    • 中油门 25% ~ 30%
    • 大油门 Throttle >= 30%
  • 刹车条件
    • 小刹车 Brake deadzone ~ 20%
    • 中刹车 20% ~ 25%
    • 急刹车 Brake >= 25%

标定结果示意:

bash 复制代码
calibration {
  speed: 4.4
  acceleration: 3.19
  command: 80.0
}
calibration {
  speed: 4.4
  acceleration: 3.21
  command: 75.0
}
calibration {
  speed: 4.6
  acceleration: -8.79
  command: -35.0
}
calibration {
  speed: 4.6
  acceleration: -7.43
  command: -33.0
}

油门和刹车的拟合示意图如下:

2 油门标定

视频中采用Carsim+matlab仿真来演示油门和刹车的标定。

参照如上视频设置好Carsim,使用如下matlab代码仿真得到不同油门开度下的 v a va va数据并拟合:

matlab 复制代码
thr = 0;  %油门开度
for i = 1:11
    sim('long_calibration');
    v_temp(:,i)=ans.vx.data;
    a_temp(:,i)=ans.ax.data;
    thr_temp(:,i)=ones(length(ans.vx.data),1)*thr;
    thr=thr+0.1;
end

%转换为行向量
v=v_temp(:,1)';
a=a_temp(:,1)';
tr=thr_temp(:,1)';
for i = 2:11
    v=[v,v_temp(:,i)'];
    a=[a,a_temp(:,i)'];
    tr=[tr,thr_temp(:,i)'];
end

F=scatteredInterpolant(v',a',tr'); %拟合
vu=0:0.1:50;
au=0:0.1:5;
table=zeros(length(vu),length(au));
for i = 1:length(vu)
    for j=1:length(au)
        table(i,j)=F(vu(i),au(j));
    end
end

不同油门下速度、加速度数据示意图如下:

再根据得到的 v a va va数据拟合如下函数
T h r o t t l e = f ( v , a ) \begin{equation} Throttle=f(v,a) \end{equation} Throttle=f(v,a)

拟合结果示意图如下:

3 刹车标定

同样的方式得到不同刹车制动压力下的 v a va va数据,仿真初始车速是50m/s,注意当车速为0时不论刹车踏板值是多少车辆减速度都是0,所以针对车速为0的结果要做一下人工处理,比如手动赋值一个比较小的值。为确保连续性,可以直接将车速较低的结果直接复制过来。

matlab 复制代码
brake = 0.1;  %制动压力
for i=1:80 
    sim('long_calibration');
    v_brake(:,i)=ans.vx.data;
    a_brake(:,i)=ans.ax.data;
    brake_temp(:,i)=ones(length(ans.vx.data),1)*brake;
    brake=brake+0.1;
end

%转换为行向量
vbr=v_brake(:,1)';
abr=a_brake(:,1)';
br=brake_temp(:,1)';
for i=2:80
    vbr=[vbr,v_brake(:,i)'];
    abr=[abr,a_brake(:,i)'];
    br=[br,brake_temp(:,i)'];
end


Fbr=scatteredInterpolant(vbr',abr',br'); %拟合
vubr=0:0.05:50;
aubr=-8:0.05:0;
tablebr=zeros(length(vubr),length(aubr));
for i = 1:length(vubr)
    for j=1:length(aubr)
        tablebr(i,j)=Fbr(vubr(i),aubr(j));
    end
end

不同刹车下速度、加速度数据示意图如下:

4 油门刹车一张表

油门刹车一起拟合,控制会更连续:

matlab 复制代码
%加速和制动的数据放到一起
v2=[v,vbr];
a2=[a,abr];
br2=[tr,br];

F=scatteredInterpolant(v2',a2',br2'); %一起拟合
vubr=0:0.05:50;
aubr=-8:0.05:5;
tablebr=zeros(length(vubr),length(aubr));
for i=1:length(vubr)
    for j=1:length(aubr)
        tablebr(i,j)=F(vubr(i),aubr(j));
    end
end

不同油门、刹车下速度、加速度数据示意图如下:

5 纵向控制仿真

参考视频搭建如下的仿真模型,使用双PID控制模块控制车辆跟随预先设定的轨迹:

仿真结果如下,蓝色曲线是预设的轨迹,黄色是控制结果,最后面的是车速小于0了,可忽略:

位置:

速度:

加速度

相关推荐
小天才才9 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU16 分钟前
机器学习的数学基础:神经网络
机器学习
新加坡内哥谈技术39 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting