题解:A. Noldbach Problem

问题描述

Nick 对素数非常感兴趣。他阅读了有关 Goldbach Problem 的内容,了解到每个大于 2 的偶数都可以表示为两个素数的和。于是他决定创造一个新问题,称为 Noldbach Problem

Noldbach 问题的定义如下:

  1. 如果一个素数 p 满足:
    • 它可以表示为两个连续素数之和再加 1,即 p = p_1 + p_2 + 1,其中 p_1, p_2 是相邻素数;
    • 那么我们称 p 为 Noldbach 数。
  2. 问题要求从 2n 的所有素数中,至少有 k 个素数是 Noldbach 数。

你的任务是帮助 Nick 判断是否存在至少 k 个满足条件的 Noldbach 数。


输入格式

输入包含两整数 nk

  • n 表示需要判断的素数的上限(2 \\leq n \\leq 1000)。
  • k 表示需要找到的 Noldbach 数的数量(0 \\leq k \\leq 1000)。

输出格式

输出 YES 如果从 2n 的素数中至少有 k 个是 Noldbach 数;否则输出 NO


示例

示例 1

输入:

复制代码
27 2

输出:

复制代码
YES

解释:

  • 小于等于 27 的素数为:2, 3, 5, 7, 11, 13, 17, 19, 23
  • 满足 Noldbach 条件的数为:13 (5 + 7 + 1)19 (7 + 11 + 1)
  • 共计 2 个,满足至少 2 个条件。

示例 2

输入:

复制代码
45 7

输出:

复制代码
NO

解释:

  • 小于等于 45 的素数为:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43
  • 满足 Noldbach 条件的数为:13, 19, 31,共计 3 个。
  • 不满足至少 7 个条件。

Python代码实现

以下是 Python 的实现代码:

复制代码
import math

def is_noldbach(n, k):
    # 使用埃拉托色尼筛法找出小于等于 n 的所有素数
    prime = [True] * (n + 1)
    prime[0] = prime[1] = False  # 0 和 1 不是素数

    for i in range(2, int(math.sqrt(n)) + 1):
        if prime[i]:
            for j in range(i * 2, n + 1, i):
                prime[j] = False

    # 收集所有小于等于 n 的素数
    primes = [i for i in range(2, n + 1) if prime[i]]

    # 检查 Noldbach 条件
    total = 0
    for i in range(2, len(primes)):
        if primes[i] == primes[i - 1] + primes[i - 2] + 1:
            total += 1

    # 判断是否满足至少 k 个 Noldbach 数
    return "YES" if total >= k else "NO"


def main():
    # 读取输入
    n, k = map(int, input().split())
    
    # 输出结果
    print(is_noldbach(n, k))


if __name__ == "__main__":
    main()

代码详解

  1. 埃拉托色尼筛法生成素数

    • 使用布尔数组 prime 标记是否为素数。
    • 2 开始,对于每个素数,将其所有倍数标记为非素数。
    • 最终所有布尔值为 True 的索引即为素数。
  2. 生成素数列表

    • 使用列表推导式提取所有小于等于 n 的素数,存储在列表 primes 中。
  3. 检查 Noldbach 条件

    • 遍历素数列表,从第 3 个素数开始(因为需要两个前置素数)。
    • 判断当前素数是否等于前两个素数之和再加 1。
  4. 判断是否满足至少 k 个条件

    • 如果找到的 Noldbach 数数量 total 大于或等于 k,输出 YES,否则输出 NO

示例测试

示例 1

输入:

复制代码
27 2

输出:

复制代码
YES

示例 2

输入:

复制代码
45 7

输出:

复制代码
NO

特点与优化

  1. 时间复杂度

    • 素数筛法为 O(n \\log \\log n)
    • Noldbach 条件检查为 O(p),其中 p 是素数的数量,约为 O(\\frac{n}{\\log n})
  2. 空间复杂度

    • 使用布尔数组和素数列表,空间复杂度为 O(n)
  3. 优化建议

    • 可以通过预计算连续素数对的和加速条件检查。

实际应用

  1. 数学研究

    • 该问题是对素数性质的深入研究,可用于数学教学与学习。
  2. 算法教学

    • 展示了筛法的基本应用,同时将筛法与条件判断相结合。
  3. 编程练习

    • 非常适合用于初学者练习算法、列表操作和数学问题建模。

总结

通过埃拉托色尼筛法高效生成素数,并结合简单的条件判断实现 Noldbach 问题的求解。代码逻辑清晰,时间复杂度较低,非常适合算法竞赛或学习使用。

如果这篇文章对你有帮助,记得点赞支持哦! 😊~


相关推荐
wuqingshun31415915 分钟前
蓝桥杯 1.路径之谜
c++·算法·职场和发展·蓝桥杯·深度优先
京东云开发者37 分钟前
3D空间视频生成技术探索与应用
算法
cosmos31537 分钟前
深度学习进行网络流识别
深度学习·算法
天天扭码1 小时前
一分钟解决 | 高频面试算法题——最长连续序列(哈希表)
前端·javascript·算法
一叶祇秋1 小时前
Leetcode - 周赛445
算法·leetcode·职场和发展
计算机视觉农民工1 小时前
机器学习有多少种算法?当下入门需要全部学习吗?
学习·算法·机器学习
地平线开发者2 小时前
【智驾中的大模型 -2】VLM 在自动驾驶中的应用
算法·自动驾驶
柯ran2 小时前
数据结构|排序算法(三)选择排序 堆排序 归并排序
数据结构·算法·排序算法
无敌的牛2 小时前
滑动窗口209. 长度最小的子数组
数据结构·算法
天天扭码2 小时前
一分钟吃透一道面试算法题——字母异位词分组(最优解)
前端·javascript·算法