肘部法则确定聚类数

肘部法则(Elbow Method)是一种常用于确定聚类数的技术。其基本思想是通过计算不同聚类数下的聚类质量(通常使用每个数据点到其聚类中心的距离的平方和,即SSE,Sum of Squared Errors),并寻找"肘部"位置来确定最佳的聚类数。

具体步骤如下:

  1. 选择聚类数范围:选择一个可能的聚类数范围,例如从1到K。

  2. 计算不同聚类数的SSE:对于每个聚类数K,使用聚类算法(例如K-means)进行聚类,然后计算每个数据点到其对应聚类中心的距离的平方和(SSE)。通常,随着聚类数的增多,SSE会逐渐减小,因为更多的聚类能更好地拟合数据。

  3. 绘制SSE与聚类数的关系图:将不同聚类数下的SSE绘制成图,通常会看到随着聚类数增加,SSE不断减小。

  4. 寻找"肘部"位置:在SSE与聚类数的图中,通常会出现一个明显的拐点(即SSE下降的速度开始减缓),这个点就被称为"肘部"。肘部位置对应的聚类数通常是最佳的聚类数,因为此时增加更多的聚类数带来的SSE下降的效果变得不显著。

示例

假设你用K-means算法在不同的聚类数下计算SSE,结果可能是这样的:

聚类数 (K) SSE
1 1000
2 800
3 600
4 500
5 450
6 420
7 410

从表格中可以看到,SSE随着聚类数的增加而减小,但在K=4之后,SSE的下降幅度减缓。因此,K=4可能是最佳的聚类数。

注意事项

  • 肘部法则并不是在所有情况下都能给出明确的聚类数选择,特别是在数据分布复杂的情况下,肘部可能不太明显。
  • 对于更复杂的情况,可以考虑结合其他方法,如轮廓系数(Silhouette Score)或Gap Statistic等。
相关推荐
AI科技星8 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
小鸡吃米…9 小时前
机器学习 - 亲和传播算法
python·机器学习·亲和传播
武子康9 小时前
大数据-210 如何在Scikit-Learn中实现逻辑回归及正则化详解(L1与L2)
大数据·后端·机器学习
jarreyer10 小时前
数据项目分析标准化流程
开发语言·python·机器学习
乾元10 小时前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
QBoson10 小时前
量子机器学习用于药物发现:系统综述
人工智能·机器学习·量子计算
咚咚王者10 小时前
人工智能之核心基础 机器学习 第十一章 无监督学习总结
人工智能·学习·机器学习
云和数据.ChenGuang10 小时前
Uvicorn 是 **Python 生态中用于运行异步 Web 应用的 ASGI 服务器**
服务器·前端·人工智能·python·机器学习
小鸡吃米…18 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
武子康1 天前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习