pytorch torch.full_like函数介绍

torch.full_like 是 PyTorch 中用于创建一个具有特定值的新张量,其形状和数据类型与给定张量相同。

函数定义

复制代码
torch.full_like(input, fill_value, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format)

参数说明

  1. input (Tensor):

    • 用来提供形状和其他属性(如设备、数据类型等)的参考张量。
  2. fill_value (float 或 int):

    • 用于填充新张量的值。
  3. dtype (torch.dtype, 可选):

    • 新张量的数据类型。如果未指定,则与 input 的数据类型相同。
  4. layout (torch.layout, 可选):

    • 新张量的内存布局。默认为 input 的布局。
  5. device (torch.device, 可选):

    • 新张量所在的设备。如果未指定,则与 input 的设备相同。
  6. requires_grad (bool, 可选, 默认值:False):

    • 如果为 True,新张量将需要梯度计算。
  7. memory_format (torch.memory_format, 可选):

    • 新张量的内存格式。默认为 torch.preserve_format,即与 input 相同的内存格式。

返回值

  • 返回一个新张量,其形状、设备、数据类型等与 input 相同,但所有元素均为 fill_value

示例

1. 基本用法
复制代码
import torch

# 创建一个参考张量
x = torch.tensor([[1, 2], [3, 4]])

# 创建一个与 x 形状相同的新张量,元素全为 5
result = torch.full_like(x, 5)
print(result)
# tensor([[5, 5],
#         [5, 5]])
2. 指定数据类型
复制代码
result = torch.full_like(x, 5.0, dtype=torch.float32)
print(result)
# tensor([[5.0, 5.0],
#         [5.0, 5.0]])
3. 指定设备
复制代码
result = torch.full_like(x, 3, device='cuda')
print(result)  # 张量在 GPU 上
4. 需要梯度
复制代码
result = torch.full_like(x, 2, requires_grad=True)
print(result.requires_grad)  # True

常见用途

  1. 快速初始化张量:在网络初始化、测试时创建具有固定值的张量。
  2. 占位符:生成形状与参考张量相同的占位张量。
  3. 兼容性计算:确保新张量与给定张量具有相同的数据类型和设备。

注意事项

  • torch.full 的区别torch.full 需要手动指定张量的形状,而 torch.full_like 自动使用参考张量的形状。

  • 支持广播fill_value 可以是标量。

  • 性能优化torch.full_like 会自动优化设备和数据类型,便于高效地创建张量。

相关推荐
萧曵 丶5 小时前
Python 字符串、列表、元组、字典、集合常用函数
开发语言·前端·python
迦蓝叶6 小时前
Apache Jena 知识图谱持久化:选择适合你的存储方案
人工智能·开源·apache·知识图谱·持久化·存储·jena
梦想的初衷~6 小时前
Plaxis自动化建模与Python应用全解:从环境搭建到高级案例实战
python·自动化·工程设计·工程软件
Q_Q5110082856 小时前
python+uniapp基于微信小程序的垃圾分类信息系统
spring boot·python·微信小程序·django·flask·uni-app·node.js
HackerTom6 小时前
vs code jupyter连gpu结点kernel
python·jupyter·gpu·vs code·远程
cyyt6 小时前
深度学习周报(11.3~11.9)
人工智能·深度学习
雍凉明月夜6 小时前
Ⅱ人工智能学习之深度学习(deep-learning)概述
人工智能·深度学习·学习
爱学习的程序媛6 小时前
【DeepSeek实战】高质量提示词的六种类型
人工智能·prompt
weixin_468466857 小时前
遗传算法求解TSP旅行商问题python代码实战
python·算法·算法优化·遗传算法·旅行商问题·智能优化·np问题
大千AI助手7 小时前
敏感性分析(Sensitivity Analysis)在机器学习中的应用详解
人工智能·机器学习·敏感性分析·sa·大千ai助手·sensitivity·可解释ai