回归预测 | MATLAB实GRU多输入单输出回归预测

回归预测 | MATLAB实GRU多输入单输出回归预测

目录

预测效果


基本介绍

回归预测 | MATLAB实GRU多输入单输出回归预测。使用GRU作为RNN的一种变体来处理时间序列数据。GRU相比传统的RNN有较好的记忆能力和防止梯度消失的特性。在模型构建中,输入层将多个时间序列数据输入到GRU模型中,而输出层通常是一个全连接层,用于将GRU的输出映射到预测的单一输出变量。

程序设计

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
addpath(genpath(pwd))
%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关推荐
jghhh012 小时前
基于PCA的轴承故障诊断MATLAB程序实现
matlab
feifeigo1233 小时前
基于帧间差分法的运动目标检测 MATLAB 实现
目标检测·matlab·目标跟踪
aini_lovee3 小时前
基于Jousselme距离改进D-S证据理论matlab实现
开发语言·算法·matlab
简简单单做算法7 小时前
基于PSO优化CNN-BiLSTM网络模型的多输入单输出回归预测算法matlab仿真
matlab·回归·cnn·回归预测·cnn-bilstm·pso-cnn-bilstm
子夜江寒8 小时前
决策树与回归树简介:原理、实现与应用
算法·决策树·回归
桓琰8 小时前
非线性滤波——基于EKF的INS/GPS松组合算法的研究(直接法|EKF|欧拉角)
算法·matlab·卡尔曼滤波算法
崇山峻岭之间9 小时前
Matlab学习笔记04
笔记·matlab
技术净胜1 天前
MATLAB进行图像分割从基础阈值到高级分割
opencv·计算机视觉·matlab
listhi5201 天前
针对燃油运输和车辆调度问题的蚁群算法MATLAB实现
前端·算法·matlab
Dillon Dong1 天前
Simulink进阶:从零打造你的自定义模块库并集成到浏览器
matlab·simulink