回归预测 | MATLAB实GRU多输入单输出回归预测

回归预测 | MATLAB实GRU多输入单输出回归预测

目录

预测效果


基本介绍

回归预测 | MATLAB实GRU多输入单输出回归预测。使用GRU作为RNN的一种变体来处理时间序列数据。GRU相比传统的RNN有较好的记忆能力和防止梯度消失的特性。在模型构建中,输入层将多个时间序列数据输入到GRU模型中,而输出层通常是一个全连接层,用于将GRU的输出映射到预测的单一输出变量。

程序设计

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
addpath(genpath(pwd))
%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关推荐
HenrySmale3 天前
05 回归问题和分类问题
分类·数据挖掘·回归
tyatyatya4 天前
MATLAB中进行视觉检测入门教程
开发语言·matlab·视觉检测
xchenhao4 天前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao4 天前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
孤心亦暖4 天前
RNN,GRU和LSTM的简单实现
rnn·gru·lstm
Morning的呀4 天前
Class48 GRU
人工智能·深度学习·gru
2zcode4 天前
基于Matlab可见光通信系统中OOK调制的误码率性能建模与分析
算法·matlab·php
听情歌落俗4 天前
MATLAB3-1变量-台大郭彦甫
开发语言·笔记·算法·matlab·矩阵
悟乙己4 天前
保序回归Isotonic Regression的sklearn实现案例
数据挖掘·回归·sklearn·保序回归
盼小辉丶5 天前
Transformer实战(18)——微调Transformer语言模型进行回归分析
深度学习·语言模型·回归·transformer