一、图像的数字化表示
- 像素
- 数字图像由众多像素组成,是图像的基本构成单位。在灰度图像中,一个像素用一个数值表示其亮度,通常 8 位存储,取值范围 0 - 255,0 为纯黑,255 为纯白。例如,一幅简单的手写数字灰度图像,像素值分布反映了笔画的浓淡。
- 彩色图像常见采用 RGB 模式,每个像素由红(R)、绿(G)、蓝(B)三个通道值构成,同样各通道一般 8 位存储,取值 0 - 255。如 (255, 0, 0) 表示纯红色,通过不同通道组合能生成各种绚丽色彩,像一幅风景彩色照片,不同物体的颜色靠 RGB 通道精准呈现。
- 图像分辨率
- 指水平与垂直方向像素数量,用 "宽 × 高" 描述,如 1920×1080。高分辨率图像含更多细节,像高清摄影作品;低分辨率图像细节少,文件也小,如用于网页缩略图。选择合适分辨率依应用场景而定,监控视频为实时传输多采用较低分辨率,而印刷图像要求高分辨率保障印刷质量。
二、图像的存储格式
- BMP
- 位图格式,无损存储,数据按像素顺序直接排列,不压缩,优点是能完美保留原始图像质量,常用于对画质要求苛刻领域,如医学影像存档,缺点是文件体积大,占用存储空间多。
- JPEG
- 联合图像专家组格式,有损压缩,基于人眼视觉特性去除不易察觉细节,压缩比可观,广泛用于日常照片存储,网络传输时能快速加载,不过多次编辑保存会累积损失,使图像质量下降。
- PNG
- 便携式网络图形格式,无损压缩且支持透明度通道,在网页图标、需要保留背景透明效果场景表现出色,既保证质量又兼顾灵活展示需求,像网页设计中的 logo 图形多用 PNG 格式。
三、图像的基本运算
- 算术运算
- 加法 :两张同尺寸图像相加,如将白天和夜晚同场景照片相加再平均,可模拟黄昏效果;但要防像素值溢出,超过 255 需特殊处理,像归一化调整。
- 减法 :常用于背景减除,从含目标图像减去背景图像,能初步勾勒目标轮廓,在安防监控里,持续采集背景图像,一旦有移动物体,通过减法快速定位目标。
- 乘法与除法 :乘法通过乘常数调整亮度,小于 1 使图像变暗,大于 1 变亮;除法可校正光照不均,如对因灯光角度问题一侧亮一侧暗的照片,用合适除数使光照均匀。
- 逻辑运算
- 主要针对二值图像(像素仅 0 或 1)。"与" 运算常用于提取图像重叠部分,两个二值图像对应像素做 "与",保留共有的形状特征;"或" 运算可合并不同区域,将两个有部分不重叠的二值图像 "或",得到完整的组合区域;"非" 运算则反转像素值,把前景变背景、背景变前景,用于简单图像反转场景。
四、颜色空间
- RGB
- 计算机图形学核心颜色空间,与显示器显示原理契合,硬件易实现。但处理颜色相关任务时,因通道相关性强,如调整红色物体色调,改变 R 通道常影响 G、B 通道,导致颜色失衡,在精准调色有局限。
- HSV
- 依人眼感知构建,色调(Hue)0 - 360° 区分颜色种类,饱和度(Saturation)0 - 1 衡量纯度,明度(Brightness)0 - 1 反映明亮程度。在颜色分割上优势显著,要提取图像中橙色部分,在 HSV 空间设定 H 范围(如 10 - 40°),S、V 合适区间,精准分离目标颜色,广泛用于目标识别前置步骤。
- 灰度
- 单通道颜色空间,将彩色转灰度常用加权平均法(Gray = 0.299R + 0.587G + 0.114B),灰度图像简化计算,许多边缘检测、特征提取任务首选灰度图启动,像经典的 Sobel 边缘检测算法在灰度图上运行效率更高,避免彩色通道干扰。
以上这些图像处理基础为后续深入学习图像滤波 、特征提取 、目标检测等高级 CV 技术筑牢根基,理解并熟练运用它们至关重要。