huggingface/bert/transformer的模型默认下载路径以及自定义路径

当使用 BertTokenizer.from_pretrained('bert-base-uncased') 加载预训练的 BERT 模型时,Hugging Face 的 transformers 库会从 Hugging Face Model Hub 下载所需的模型文件和分词器文件(如果它们不在本地缓存中)。

默认情况下,这些文件会被下载到本地的缓存目录中。缓存目录具体位置因您的操作系统和环境不同,但通常是以下路径之一:

默认缓存目录

  1. Linux / Unix / macOS

    • 默认路径:~/.cache/huggingface/transformers
    • 其中,~ 代表您的用户主目录。
  2. Windows

    • 默认路径:C:\Users\<YourUserName>\.cache\huggingface\transformers

自定义缓存路径

如果由于某些原因您需要更改默认的缓存路径,可以通过设置环境变量 TRANSFORMERS_CACHE 来指定新的路径。例如,在命令行中设置:

bash 复制代码
export TRANSFORMERS_CACHE=/your/custom/path

或者在 Python 代码中动态设置:

python 复制代码
import os
os.environ['TRANSFORMERS_CACHE'] = '/your/custom/path'

检查文件的具体位置

我们可以通过简单的脚本检查缓存路径和下载的文件:

python 复制代码
from transformers import BertTokenizer

# 检查默认的缓存路径
import os
cache_path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "transformers")
print(f"Default cache path: {cache_path}")

# 加载分词器,触发下载(如果尚未下载)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 列出缓存目录中的文件
for root, dirs, files in os.walk(cache_path):
    for file in files:
        print(os.path.join(root, file))

通过该脚本,可以确认默认的缓存路径,并列出缓存目录中的文件,确保模型和分词器成功下载。

相关推荐
szxinmai主板定制专家6 分钟前
柔宇柔性显示屏+x86、arm显示解决方案,还有库存
arm开发·人工智能·fpga开发
一个处女座的程序猿8 分钟前
AI之PaperTool:Aella Science Dataset Explorer(LAION )的简介、安装和使用方法、案例应用之详细攻略
人工智能·papertool·aella science
冴羽10 分钟前
一次找齐!1000 个 Nano Banana Pro 提示词
人工智能·aigc·gemini
reddingtons1 小时前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都1 小时前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群1 小时前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术1 小时前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。1 小时前
AI时代的UI发展
人工智能·ui
拖拖7652 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能
攻城狮7号2 小时前
告别显存焦虑:阿里开源 Z-Image 如何用 6B 参数立足AI 绘画时代
人工智能·ai 绘画·qwen-image·z-image-turbo·阿里开源模型