huggingface/bert/transformer的模型默认下载路径以及自定义路径

当使用 BertTokenizer.from_pretrained('bert-base-uncased') 加载预训练的 BERT 模型时,Hugging Face 的 transformers 库会从 Hugging Face Model Hub 下载所需的模型文件和分词器文件(如果它们不在本地缓存中)。

默认情况下,这些文件会被下载到本地的缓存目录中。缓存目录具体位置因您的操作系统和环境不同,但通常是以下路径之一:

默认缓存目录

  1. Linux / Unix / macOS

    • 默认路径:~/.cache/huggingface/transformers
    • 其中,~ 代表您的用户主目录。
  2. Windows

    • 默认路径:C:\Users\<YourUserName>\.cache\huggingface\transformers

自定义缓存路径

如果由于某些原因您需要更改默认的缓存路径,可以通过设置环境变量 TRANSFORMERS_CACHE 来指定新的路径。例如,在命令行中设置:

bash 复制代码
export TRANSFORMERS_CACHE=/your/custom/path

或者在 Python 代码中动态设置:

python 复制代码
import os
os.environ['TRANSFORMERS_CACHE'] = '/your/custom/path'

检查文件的具体位置

我们可以通过简单的脚本检查缓存路径和下载的文件:

python 复制代码
from transformers import BertTokenizer

# 检查默认的缓存路径
import os
cache_path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "transformers")
print(f"Default cache path: {cache_path}")

# 加载分词器,触发下载(如果尚未下载)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 列出缓存目录中的文件
for root, dirs, files in os.walk(cache_path):
    for file in files:
        print(os.path.join(root, file))

通过该脚本,可以确认默认的缓存路径,并列出缓存目录中的文件,确保模型和分词器成功下载。

相关推荐
北京耐用通信8 小时前
预算减半,效率翻倍:耐达讯自动化Profibus六路中继器如何成为工程师的“省钱利器”
人工智能·物联网·网络协议·自动化·信息与通信
泰迪智能科技8 小时前
分享|大数据人工智能实验室合作案例举例
大数据·人工智能·科技
飞哥数智坊8 小时前
GLM-4.7 上手初测:前端审美确实能打,值得一试
人工智能·ai编程·chatglm (智谱)
古城小栈8 小时前
医疗健康:区块链 + AI 疾病预测模型落地实践
人工智能·区块链
我很哇塞耶8 小时前
打破模态壁垒!DSE:以文档截图为核心的多模态检索范式
人工智能·ai·大模型
渡我白衣8 小时前
计算机组成原理(9):零拓展与符号拓展
c语言·汇编·人工智能·嵌入式硬件·网络协议·硬件工程·c
sali-tec8 小时前
C# 基于halcon的视觉工具VisionTool Halcon发布
人工智能·深度学习·算法·计算机视觉·分类
q_30238195568 小时前
秒级筛查+94.7%精准!华为Atlas 200 DK边缘设备解锁糖尿病视网膜病变检测新范式
人工智能·python·深度学习·智能体
RPA机器人就选八爪鱼8 小时前
RPA批量采集抖音评论高效攻略:精准获取用户反馈与市场洞察
大数据·人工智能·机器人·rpa
xerthwis9 小时前
HDFS:那座正在云化与解构的“古老高墙”
大数据·数据仓库·人工智能·hdfs·数据库开发·数据库架构