huggingface/bert/transformer的模型默认下载路径以及自定义路径

当使用 BertTokenizer.from_pretrained('bert-base-uncased') 加载预训练的 BERT 模型时,Hugging Face 的 transformers 库会从 Hugging Face Model Hub 下载所需的模型文件和分词器文件(如果它们不在本地缓存中)。

默认情况下,这些文件会被下载到本地的缓存目录中。缓存目录具体位置因您的操作系统和环境不同,但通常是以下路径之一:

默认缓存目录

  1. Linux / Unix / macOS

    • 默认路径:~/.cache/huggingface/transformers
    • 其中,~ 代表您的用户主目录。
  2. Windows

    • 默认路径:C:\Users\<YourUserName>\.cache\huggingface\transformers

自定义缓存路径

如果由于某些原因您需要更改默认的缓存路径,可以通过设置环境变量 TRANSFORMERS_CACHE 来指定新的路径。例如,在命令行中设置:

bash 复制代码
export TRANSFORMERS_CACHE=/your/custom/path

或者在 Python 代码中动态设置:

python 复制代码
import os
os.environ['TRANSFORMERS_CACHE'] = '/your/custom/path'

检查文件的具体位置

我们可以通过简单的脚本检查缓存路径和下载的文件:

python 复制代码
from transformers import BertTokenizer

# 检查默认的缓存路径
import os
cache_path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "transformers")
print(f"Default cache path: {cache_path}")

# 加载分词器,触发下载(如果尚未下载)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 列出缓存目录中的文件
for root, dirs, files in os.walk(cache_path):
    for file in files:
        print(os.path.join(root, file))

通过该脚本,可以确认默认的缓存路径,并列出缓存目录中的文件,确保模型和分词器成功下载。

相关推荐
香芋Yu5 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑5 小时前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体
独自归家的兔5 小时前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
一个处女座的程序猿5 小时前
AI:解读Sam Altman与多位 AI 构建者对话—构建可落地的 AI—剖析 OpenAI Town Hall 与给创业者、产品/工程/安全团队的实用指南
人工智能
依依yyy5 小时前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
海域云-罗鹏5 小时前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
冬奇Lab5 小时前
深入理解 Claude Code:架构、上下文与工具系统
人工智能·ai编程
Up九五小庞5 小时前
本地部署 + Docker 容器化实战:中医舌诊 AI 项目 TongueDiagnosis 部署全记录-九五小庞
人工智能
John_ToDebug5 小时前
2025年度个人总结:在技术深海中锚定价值,于时代浪潮中重塑自我
人工智能·程序人生
自可乐6 小时前
n8n全面学习教程:从入门到精通的自动化工作流引擎实践指南
运维·人工智能·学习·自动化