huggingface/bert/transformer的模型默认下载路径以及自定义路径

当使用 BertTokenizer.from_pretrained('bert-base-uncased') 加载预训练的 BERT 模型时,Hugging Face 的 transformers 库会从 Hugging Face Model Hub 下载所需的模型文件和分词器文件(如果它们不在本地缓存中)。

默认情况下,这些文件会被下载到本地的缓存目录中。缓存目录具体位置因您的操作系统和环境不同,但通常是以下路径之一:

默认缓存目录

  1. Linux / Unix / macOS

    • 默认路径:~/.cache/huggingface/transformers
    • 其中,~ 代表您的用户主目录。
  2. Windows

    • 默认路径:C:\Users\<YourUserName>\.cache\huggingface\transformers

自定义缓存路径

如果由于某些原因您需要更改默认的缓存路径,可以通过设置环境变量 TRANSFORMERS_CACHE 来指定新的路径。例如,在命令行中设置:

bash 复制代码
export TRANSFORMERS_CACHE=/your/custom/path

或者在 Python 代码中动态设置:

python 复制代码
import os
os.environ['TRANSFORMERS_CACHE'] = '/your/custom/path'

检查文件的具体位置

我们可以通过简单的脚本检查缓存路径和下载的文件:

python 复制代码
from transformers import BertTokenizer

# 检查默认的缓存路径
import os
cache_path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "transformers")
print(f"Default cache path: {cache_path}")

# 加载分词器,触发下载(如果尚未下载)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 列出缓存目录中的文件
for root, dirs, files in os.walk(cache_path):
    for file in files:
        print(os.path.join(root, file))

通过该脚本,可以确认默认的缓存路径,并列出缓存目录中的文件,确保模型和分词器成功下载。

相关推荐
wshzd16 小时前
LLM之Agent(三十九)|AI Agents(八):构建Multi-Agent系统
人工智能·microsoft
爱加糖的橙子16 小时前
升级到dify1.10.1-fix版本后,还是有漏洞,React和Next.js的版本和官网描述不一样
前端·人工智能·react.js·阿里云
IT·小灰灰16 小时前
Doubao-Seedream-4.5:当AI学会“版式设计思维“——设计师的七种新武器
javascript·网络·人工智能·python·深度学习·生成对抗网络·云计算
阿杰学AI16 小时前
AI核心知识42——大语言模型之AI Coding(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai编程·cursor·ai coding
工藤学编程16 小时前
零基础学AI大模型之LangChain整合Milvus:新增与删除数据实战
人工智能·langchain·milvus
希艾席帝恩16 小时前
从制造到“智造”:数字孪生驱动的工业革命
大数据·人工智能·数字孪生·数据可视化·数字化转型
方品16 小时前
从0构建深度学习框架——揭秘深度学习框架的黑箱
人工智能·深度学习
九河_16 小时前
关于DiT模型的一些思考
transformer·vae·diffusion·dit
光羽隹衡16 小时前
机器学习的介绍
人工智能·机器学习
1+2单片机电子设计16 小时前
STM32 智能外卖柜的设计与实现
人工智能·stm32·单片机·嵌入式硬件