huggingface/bert/transformer的模型默认下载路径以及自定义路径

当使用 BertTokenizer.from_pretrained('bert-base-uncased') 加载预训练的 BERT 模型时,Hugging Face 的 transformers 库会从 Hugging Face Model Hub 下载所需的模型文件和分词器文件(如果它们不在本地缓存中)。

默认情况下,这些文件会被下载到本地的缓存目录中。缓存目录具体位置因您的操作系统和环境不同,但通常是以下路径之一:

默认缓存目录

  1. Linux / Unix / macOS

    • 默认路径:~/.cache/huggingface/transformers
    • 其中,~ 代表您的用户主目录。
  2. Windows

    • 默认路径:C:\Users\<YourUserName>\.cache\huggingface\transformers

自定义缓存路径

如果由于某些原因您需要更改默认的缓存路径,可以通过设置环境变量 TRANSFORMERS_CACHE 来指定新的路径。例如,在命令行中设置:

bash 复制代码
export TRANSFORMERS_CACHE=/your/custom/path

或者在 Python 代码中动态设置:

python 复制代码
import os
os.environ['TRANSFORMERS_CACHE'] = '/your/custom/path'

检查文件的具体位置

我们可以通过简单的脚本检查缓存路径和下载的文件:

python 复制代码
from transformers import BertTokenizer

# 检查默认的缓存路径
import os
cache_path = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "transformers")
print(f"Default cache path: {cache_path}")

# 加载分词器,触发下载(如果尚未下载)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 列出缓存目录中的文件
for root, dirs, files in os.walk(cache_path):
    for file in files:
        print(os.path.join(root, file))

通过该脚本,可以确认默认的缓存路径,并列出缓存目录中的文件,确保模型和分词器成功下载。

相关推荐
绫语宁11 分钟前
以防你不知道LLM小技巧!为什么 LLM 不适合多任务推理?
人工智能·后端
霍格沃兹测试开发学社-小明12 分钟前
AI来袭:自动化测试在智能实战中的华丽转身
运维·人工智能·python·测试工具·开源
大千AI助手20 分钟前
Softmax函数:深度学习中的多类分类基石与进化之路
人工智能·深度学习·机器学习·分类·softmax·激活函数·大千ai助手
韩曙亮23 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ② ( 深度学习 -> 机器视觉 )
人工智能·深度学习·学习·ai·机器视觉
九千七52628 分钟前
sklearn学习(3)数据降维
人工智能·python·学习·机器学习·sklearn
黑客思维者31 分钟前
Salesforce Einstein GPT 人机协同运营的核心应用场景与工作流分析
人工智能·gpt·深度学习·salesforce·rag·人机协同·einstein gpt
多恩Stone1 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
郭庆汝1 小时前
(七)自然语言处理笔记——Ai医生
人工智能·笔记·自然语言处理
生而为虫1 小时前
28.Python处理图像
人工智能·python·计算机视觉·pillow·pygame
Dev7z1 小时前
基于OpenCV和MATLAB的椭圆检测系统的设计与实现
人工智能·opencv·matlab