大数据学习(32)-spark基础总结

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark提供多种运行模式:

1.本地模式(单机)

本地模式就是以一个 独立的进程 ,通过其内部的 多个线程来模拟 整个Spark运行时环境

2.Standalone模式(集群)

Spark中的各个角色以 独立进程 的形式存在,并组成Spark集群环境

3.Hadoop YARN模式(集群)

Spark中的各个角色 运行在 YARN 的容器内部 ,并组成Spark集群环境

4.Kubernetes模式(容器集群)

Spark中的各个角色 运行在 Kubernetes 的容器内部 ,并组成Spark集群环境

5.云服务模式(运行在云平台上)

spark运行模式图解:

Spark中由4类角色组成整个Spark的运行时环境

. Master角色,管理整个集群的资源
类比与YARN的ResouceManager
. Worker角色,管理单个服务器的资源
类比于YARN的NodeManager
.Driver角色,管理单个Spark任务在运行的时候的工作
类比YARN日的ApplicationMaster
Executor角色,单个任务运行的时候的一堆工作者,干活的.类比于YARN的容器内运行的TASK

从2个层面划分:资源管理层面:

。管理者: Spark是Master角色,YARN是ResourceManager。工作中: Spark是Worker角色,YARN是NodeManager从任务执行层面:
·某任务管理者: Spark是Driver角色,YARN是ApplicationMaster
·某任务执行者: Spark是Executor角色,YARN是容器中运行的具体工作进程。

Spark On Yarn的本质?

Master角色由YARN的ResourceManager担任.Worker角色由YARN的NodeManager担任.

Driver角色运行在YARN容器内或提交任务的客户端进程中真正干活的Executor运行在YARN提供的容器内。

重点:

Spark On Yarn两种模式:
Client模式和Cluster模式最最本质的区别是:Driver程序运行在哪里。
Client模式:学习测试时使用,生产不推荐(要用也可以,性能略低,稳定性略低)

1.Driver运行在Client上,和集群的通信成本高。
2.Driver输出结果会在客户端显示
Cluster模式:生产环境中使用该模式
1.Driver程序在YARN集群中,和集群的通信成本低

2.Driver输出结果不能在客户端显示
3.该模式下Driver运行ApplicattionMaster这个节点上,由Yarn管理,如果出现问题,yarn会重启ApplicattionMaster(Driver)

所以在spark on yarn中提高资源利用率,在已有YARN的场景下让Spark收到YARN的调度可以更好的管控资源提高利用率并方便管理。

相关推荐
一只乔哇噻8 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood8 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
暗然而日章8 小时前
C++基础:Stanford CS106L学习笔记 4 容器(关联式容器)
c++·笔记·学习
盐焗西兰花9 小时前
鸿蒙学习实战之路:Tabs 组件开发场景最佳实践
学习·华为·harmonyos
_Kayo_9 小时前
Next.js 路由 简单学习笔记
笔记·学习·next.js
盐焗西兰花9 小时前
鸿蒙学习实战之路 - 瀑布流操作实现
学习·华为·harmonyos
酒尘&9 小时前
Hook学习-上篇
前端·学习·react.js·前端框架·react
非著名架构师10 小时前
城市通风廊道的科学依据:气候大数据如何指导未来城市规划设计
大数据·风光功率预测·高精度气象数据
IIIIIILLLLLLLLLLLLL10 小时前
Hadoop集群时间同步方法
大数据·hadoop·分布式
搞科研的小刘选手10 小时前
【经管专题会议】第五届大数据经济与数字化管理国际学术会议(BDEDM 2026)
大数据·区块链·学术会议·数据化管理·经济理论