NLP 基础理论和工具使用

第一部分:NLP 基础理论

1.1 什么是自然语言处理(NLP)?

定义:自然语言处理是一门让计算机能够理解、生成和操作人类语言的技术。

应用场景:

文本分类:垃圾邮件检测、情感分析。

信息提取:命名实体识别(NER)、关系抽取。

机器翻译:如 Google 翻译。

文本生成:如 ChatGPT、自动摘要。

1.2 NLP 工作的基本流程

文本获取:从文件、数据库、API 获取文本。

文本预处理:将原始文本清洗为机器可处理的格式。

分词、去停用词、标注词性等。

文本表示:将文本转化为数字表示(如 Bag of Words、TF-IDF、词向量)。

模型训练:训练分类器、序列标注模型等。

结果输出:生成模型的输出(如分类标签、摘要等)。

1.3 文本预处理基础

在 NLP 中,预处理是非常重要的环节。常见步骤包括:

分词 (Tokenization):

将句子切分为单词或子词单位。

示例:"I love NLP" → ['I', 'love', 'NLP']

去停用词 (Stop Words Removal):

去除像"a"、"the"、"is"这样对语义影响较小的词。

示例:['I', 'love', 'NLP'] → ['love', 'NLP']

词形还原 (Lemmatization):

将单词还原到它的基本形式。

示例:"running" → "run"

词性标注 (POS Tagging):

给每个单词标注它的语法类别,如名词、动词等。

示例:"I love NLP" → [('I', 'PRP'), ('love', 'VBP'), ('NLP', 'NN')]

第二部分:NLP 工具使用

我们通过实践了解 NLTK 和 spaCy 的基础用法。

NLTK 基础用法

安装 NLTK:

pip install nltk

  1. 文本分词
    import nltk
    from nltk.tokenize import word_tokenize, sent_tokenize

下载 NLTK 数据

nltk.download('punkt')

示例文本

text = "Natural Language Processing (NLP) is exciting! It helps computers understand human language."

句子分割

sentences = sent_tokenize(text)

print("句子分割:", sentences)

单词分割

words = word_tokenize(text)

print("单词分割:", words)

  1. 去停用词

from nltk.corpus import stopwords

下载停用词数据

nltk.download('stopwords')

获取英语停用词表

stop_words = set(stopwords.words('english'))

去除停用词

filtered_words = [word for word in words if word.lower() not in stop_words]

print("去停用词:", filtered_words)

  1. 词性标注

from nltk import pos_tag

下载词性标注数据

nltk.download('averaged_perceptron_tagger')

词性标注

pos_tags = pos_tag(filtered_words)

print("词性标注:", pos_tags)

  1. 词形还原

from nltk.stem import WordNetLemmatizer

下载词形还原数据

nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

示例

lemmas = [lemmatizer.lemmatize(word) for word in filtered_words]

print("词形还原:", lemmas)

spaCy 基础用法

安装 spaCy:

pip install spacy

python -m spacy download en_core_web_sm

  1. 加载文本
    import spacy

加载预训练模型

nlp = spacy.load('en_core_web_sm')

示例文本

text = "Natural Language Processing (NLP) is exciting! It helps computers understand human language."

doc = nlp(text)

  1. 文本分词

单词分割

tokens = [token.text for token in doc]

print("单词分割:", tokens)

  1. 词性标注

词性标注

pos_tags = [(token.text, token.pos_) for token in doc]

print("词性标注:", pos_tags)

  1. 命名实体识别 (NER)

命名实体识别

entities = [(ent.text, ent.label_) for ent in doc.ents]

print("命名实体识别:", entities)

相关推荐
amhjdx4 分钟前
星巽短剧以科技赋能影视创新,构建全球短剧新生态!
人工智能·科技
听风南巷35 分钟前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
美林数据Tempodata1 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
电科_银尘1 小时前
【大语言模型】-- 私有化部署
人工智能·语言模型·自然语言处理
翔云 OCR API3 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
南方者3 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
庄周迷蝴蝶3 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran3 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
大千AI助手4 小时前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调
雾江流4 小时前
RikkaHub 1.6.11 | 开源的本地大型语言模型聚合应用,支持多种AI服务提供商
人工智能·语言模型·自然语言处理·软件工程