NLP 基础理论和工具使用

第一部分:NLP 基础理论

1.1 什么是自然语言处理(NLP)?

定义:自然语言处理是一门让计算机能够理解、生成和操作人类语言的技术。

应用场景:

文本分类:垃圾邮件检测、情感分析。

信息提取:命名实体识别(NER)、关系抽取。

机器翻译:如 Google 翻译。

文本生成:如 ChatGPT、自动摘要。

1.2 NLP 工作的基本流程

文本获取:从文件、数据库、API 获取文本。

文本预处理:将原始文本清洗为机器可处理的格式。

分词、去停用词、标注词性等。

文本表示:将文本转化为数字表示(如 Bag of Words、TF-IDF、词向量)。

模型训练:训练分类器、序列标注模型等。

结果输出:生成模型的输出(如分类标签、摘要等)。

1.3 文本预处理基础

在 NLP 中,预处理是非常重要的环节。常见步骤包括:

分词 (Tokenization):

将句子切分为单词或子词单位。

示例:"I love NLP" → ['I', 'love', 'NLP']

去停用词 (Stop Words Removal):

去除像"a"、"the"、"is"这样对语义影响较小的词。

示例:['I', 'love', 'NLP'] → ['love', 'NLP']

词形还原 (Lemmatization):

将单词还原到它的基本形式。

示例:"running" → "run"

词性标注 (POS Tagging):

给每个单词标注它的语法类别,如名词、动词等。

示例:"I love NLP" → [('I', 'PRP'), ('love', 'VBP'), ('NLP', 'NN')]

第二部分:NLP 工具使用

我们通过实践了解 NLTK 和 spaCy 的基础用法。

NLTK 基础用法

安装 NLTK:

pip install nltk

  1. 文本分词
    import nltk
    from nltk.tokenize import word_tokenize, sent_tokenize

下载 NLTK 数据

nltk.download('punkt')

示例文本

text = "Natural Language Processing (NLP) is exciting! It helps computers understand human language."

句子分割

sentences = sent_tokenize(text)

print("句子分割:", sentences)

单词分割

words = word_tokenize(text)

print("单词分割:", words)

  1. 去停用词

from nltk.corpus import stopwords

下载停用词数据

nltk.download('stopwords')

获取英语停用词表

stop_words = set(stopwords.words('english'))

去除停用词

filtered_words = [word for word in words if word.lower() not in stop_words]

print("去停用词:", filtered_words)

  1. 词性标注

from nltk import pos_tag

下载词性标注数据

nltk.download('averaged_perceptron_tagger')

词性标注

pos_tags = pos_tag(filtered_words)

print("词性标注:", pos_tags)

  1. 词形还原

from nltk.stem import WordNetLemmatizer

下载词形还原数据

nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

示例

lemmas = [lemmatizer.lemmatize(word) for word in filtered_words]

print("词形还原:", lemmas)

spaCy 基础用法

安装 spaCy:

pip install spacy

python -m spacy download en_core_web_sm

  1. 加载文本
    import spacy

加载预训练模型

nlp = spacy.load('en_core_web_sm')

示例文本

text = "Natural Language Processing (NLP) is exciting! It helps computers understand human language."

doc = nlp(text)

  1. 文本分词

单词分割

tokens = [token.text for token in doc]

print("单词分割:", tokens)

  1. 词性标注

词性标注

pos_tags = [(token.text, token.pos_) for token in doc]

print("词性标注:", pos_tags)

  1. 命名实体识别 (NER)

命名实体识别

entities = [(ent.text, ent.label_) for ent in doc.ents]

print("命名实体识别:", entities)

相关推荐
AI营销实验室2 分钟前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能
视***间5 分钟前
智驱万物,视联未来 —— 视程空间以 AI 硬科技赋能全场景智能革新
人工智能·边缘计算·视程空间·ai算力开发板
一个java开发24 分钟前
mcp demo 智能天气服务:经纬度预报与城市警报
人工智能
阿里云大数据AI技术26 分钟前
OmniThoughtV:面向多模态深度思考的高质量数据蒸馏
人工智能
jkyy201430 分钟前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
hy156878637 分钟前
coze编程-工作流-起起起---废(一句话生成工作流)
人工智能·coze·自动编程
brave and determined40 分钟前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
Fuly102442 分钟前
MCP协议的简介和简单实现
人工智能·langchain
焦耳加热1 小时前
湖南大学/香港城市大学《ACS Catalysis》突破:微波热冲击构筑异质结,尿素电氧化性能跃升
人工智能·科技·能源·制造·材料工程
这张生成的图像能检测吗1 小时前
(论文速读)基于迁移学习的大型复杂结构冲击监测
人工智能·数学建模·迁移学习·故障诊断·结构健康监测·传感器应用·加权质心算法