深度学习camp-第J7周:对于ResNeXt-50算法的思考

📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考

📌打卡要求:请查找相关资料、逐步推理模型、详细写下你的思考过程

代码如下

python 复制代码
# 定义残差单元  
def block(x, filters, strides=1, groups=32, conv_shortcut=True):  

    if conv_shortcut:  
        shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)  
        # epsilon为BN公式中防止分母为零的值  
        shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)  
    else:  
        # identity_shortcut  
        shortcut = x  
        
    # 三层卷积层  
    x = Conv2D(filters=filters, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  
    x = BatchNormalization(epsilon=1.001e-5)(x)  
    x = ReLU()(x)  
    # 计算每组的通道数  
    g_channels = int(filters / groups)  
    # 进行分组卷积  
    x = grouped_convolution_block(x, strides, groups, g_channels)  

    x = Conv2D(filters=filters * 2, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  
    x = BatchNormalization(epsilon=1.001e-5)(x)  
    x = Add()([x, shortcut])  
    x = ReLU()(x)  
    return x

如果conv_shortcut=False,那么执行"x=Add()..."语句时,通道数不一致的,为什么不会报错呢?

思考

关键点分析:

  1. conv_shortcut=False 时的 shortcut

    • conv_shortcut=False 时,shortcut 直接等于 x,没有经过卷积层处理。也就是说,在 x = Add()([x, shortcut]) 这一行之前,shortcutx 是相同的张量。因此,它们的通道数和空间尺寸应该是相同的,直接相加是没有问题的。
    • 因此,执行 Add() 时,xshortcut 的维度是匹配的。
  2. conv_shortcut=True 时的 shortcut

    • conv_shortcut=True 时,shortcut 会通过一个 1x1 卷积进行通道数调整:

      python 复制代码
      shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)
      • 这里 shortcut 的通道数被修改为 filters * 2,使其与主路径输出的通道数一致。
      • 如果步长 strides 是大于1的值(例如2),则 shortcut 的空间尺寸(高度和宽度)也会发生变化,因此需要保证它们的空间尺寸与主路径的输出相匹配。为此,使用 Conv2DBatchNormalization 来调整通道数,并保持 padding='same' 来避免空间尺寸的变化。
  3. Add() 层的作用

    • Add() 层要求输入张量的维度一致。如果 conv_shortcut=Falseshortcutx 在通道数和空间尺寸上已经是相同的,因此直接相加是不会出现维度不匹配的错误的。
    • 但是,如果通道数或空间尺寸不一致,Keras 会抛出错误,提示"维度不匹配"或类似错误。

为什么没有报错:

  • conv_shortcut=False 时,shortcutx 的维度是一样的 ,因为 shortcut = x,它们在通道数、空间尺寸等维度上都相同,因此 Add() 操作没有问题。
  • Add() 操作本身不会对维度进行任何变换,它只是简单地将两个张量逐元素相加。如果两个张量的维度不一致,Keras 会报错。

结论:

  • conv_shortcut=False 的情况下,shortcut 直接等于 x,因此它们的维度是相同的,Add() 操作能够成功执行。
  • 只有当 conv_shortcut=True 时,shortcut 会通过卷积进行维度调整,这样就确保了通道数和空间尺寸与主路径的输出一致,避免了维度不匹配的问题。

测试:

为了验证,可以在代码中添加调试语句,打印出 x.shapeshortcut.shape,看看它们在执行 Add() 之前是否匹配。例如:

python 复制代码
print("x shape:", x.shape)
print("shortcut shape:", shortcut.shape)

这可以帮助进一步确认 xshortcut 在执行加法之前是否一致。

相关推荐
八月瓜科技3 分钟前
工业和信息化部国际经济技术合作中心第五党支部与八月瓜科技党支部开展主题党日活动暨联学联建活动
大数据·人工智能·科技·深度学习·机器人·娱乐
阿杰学AI6 分钟前
AI核心知识65——大语言模型之Vibe Coding (简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai编程·vibe coding·ai coding
阿杰学AI6 分钟前
AI核心知识64——大语言模型之RLVR (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·rlvr·基于可验证奖励的强化学习
DisonTangor6 分钟前
【腾讯拥抱开源】HY-World 1.5:具有实时延迟与几何一致性的交互式世界建模系统框架
人工智能·计算机视觉·开源·aigc
胡伯来了7 分钟前
08 Transformers - 微调
人工智能·深度学习·机器学习·transformer·transformers
Salt_072811 分钟前
DAY 42 图像数据与显存
人工智能·python·机器学习
InfiSight智睿视界12 分钟前
AI驱动下的连锁餐饮巡店模式:从人工核验到智能闭环
人工智能·智能巡检系统
hopsky12 分钟前
阿里云数据中台data+ai架构演进
人工智能·阿里云·架构
q_302381955612 分钟前
双能突围!能源高效型模型压缩+碳足迹追踪,解锁数据中心与农业AI新价值
人工智能·python·深度学习·能源·课程设计·ai编程
byzh_rc14 分钟前
[模式识别-从入门到入土] 高斯混合模型
人工智能·机器学习·支持向量机