DeepFM模型介绍

DeepFM模型

1.模型简介

CTR预估是目前推荐系统的核心技术,其目标是预估用户点击推荐内容的概率。DeepFM模型包含FM和DNN两部分,FM模型可以抽取low-order(低阶)特征,DNN可以抽取high-order(高阶)特征。低阶特征可以理解为线性的特征组合,高阶特征,可以理解为经过多次线性-非线性组合操作之后形成的特征,为高度抽象特征。无需Wide&Deep模型人工特征工程。由于输入仅为原始特征,而且FM和DNN共享输入向量特征,DeepFM模型训练速度很快。Wide&Deep是一种融合浅层(wide)模型和深层(deep)模型进行联合训练的框架,综合利用浅层模型的记忆能力和深层模型的泛化能力,实现单模型对推荐系统准确性和扩展性的兼顾。

2.DeepFM模型结构

为了同时利用low-order和high-order特征,DeepFM包含FM和DNN两部分,两部分共享输入特征。对于特征i,标量wi是其1阶特征的权重,该特征和其他特征的交互影响用隐向量Vi来表示。Vi输入到FM模型获得特征的2阶表示,输入到DNN模型得到high-order高阶特征。

y ^ = s i g m o i d ( y F M + y D N N ) \hat{y} = sigmoid(y_{FM} + y_{DNN}) y^=sigmoid(yFM+yDNN)

DeepFM模型结构如下图所示,完成对稀疏特征的嵌入后,由FM层和DNN层共享输入向量,经前向反馈后输出。

为什么使用FM和DNN进行结合?

  • 在排序模型刚起步的年代,FM很好地解决了LR需要大规模人工特征交叉的痛点,引入任意特征的二阶特征组合,并通过向量内积求特征组合权重的方法大大提高了模型的泛化能力。
  • 标准FM的缺陷也恰恰是只能做二阶特征交叉。

所以,将FM与DNN结合可以帮助我们捕捉特征之间更复杂的非线性关系。

为什么不使用FM和RNN进行结合?

  • 如果一个任务需要处理序列 信息,即本次输入得到的输出结果,不仅和本次输入相关,还和之前的输入相关,那么使用RNN循环神经网络可以很好地利用到这样的序列信息
  • 在预估点击率时,我们会假设用户每次是否点击的事件是独立的,不需要考虑序列信息,因此RNN于FM结合来预估点击率并不合适。还是使用DNN来模拟出特征之间的更复杂的非线性关系更能帮助到FM。

3.FM

FM(Factorization Machines,因子分解机)最早由Steffen Rendle于2010年在ICDM上提出,它是一种通用的预测方法,在即使数据非常稀疏的情况下,依然能估计出可靠的参数进行预测。与传统的简单线性模型不同的是,因子分解机考虑了特征间的交叉,对所有嵌套变量交互进行建模(类似于SVM中的核函数),因此在推荐系统和计算广告领域关注的点击率CTR(click-through rate)和转化率CVR(conversion rate)两项指标上有着良好的表现。

为什么使用FM?

  • 特征组合是许多机器学习建模过程中遇到的问题,如果对特征直接建模,很有可能忽略掉特征与特征之间的关联信息,一次可以通过构建新的交叉特征这一特征组合方式提高模型的效果。FM可以得到特征之间的关联信息。
  • 高维的稀疏矩阵是实际工程中常见的问题,并且直接导致计算量过大,特征权值更新缓慢。试想一个10000100的表,每一列都有8中元素,经过one-hot编码之后,会产生一个10000800的表。

而FM的优势就在于对这两方面问题的处理。首先是特征组合,通过两两特征组合,引入交叉项特征(二阶特征),提高模型得分;其次是高维灾难,通过引入隐向量(对参数矩阵进行分解),完成特征参数的估计。

FM模型不单可以建模1阶特征,还可以通过隐向量点积的方法高效的获得2阶特征表示,即使交叉特征在数据集中非常稀疏甚至是从来没出现过。这也是FM的优势所在。

y F M = < w , x > + ∑ j 1 = 1 d ∑ j 2 = j 1 + 1 d < V i , V j > x j 1 ⋅ x j 2 y_{FM}= <w,x> + \sum_{j_1=1}^{d}\sum_{j_2=j_1+1}^{d}<V_i,V_j>x_{j_1}\cdot x_{j_2} yFM=<w,x>+j1=1∑dj2=j1+1∑d<Vi,Vj>xj1⋅xj2

4.DNN

该部分和Wide&Deep模型类似,是简单的前馈网络。在输入特征部分,由于原始特征向量多是高纬度,高度稀疏,连续和类别混合的分域特征,因此将原始的稀疏表示特征映射为稠密的特征向量。

假设子网络的输出层为:

a ( 0 ) = [ e 1 , e 2 , e 3 , . . . e n ] a^{(0)}=[e1,e2,e3,...en] a(0)=[e1,e2,e3,...en]

DNN网络第l层表示为:

a ( l + 1 ) = σ ( W ( l ) a ( l ) + b ( l ) ) a^{(l+1)}=\sigma{(W^{(l)}a^{(l)}+b^{(l)})} a(l+1)=σ(W(l)a(l)+b(l))

再假设有H个隐藏层,DNN部分的预测输出可表示为:

y D N N = σ ( W ∣ H ∣ + 1 ⋅ a H + b ∣ H ∣ + 1 ) y_{DNN}= \sigma{(W^{|H|+1}\cdot a^H + b^{|H|+1})} yDNN=σ(W∣H∣+1⋅aH+b∣H∣+1)

DNN深度神经网络层结构如下图所示:

5.Loss及Auc计算

DeepFM模型的损失函数选择Binary_Cross_Entropy(二值交叉熵)函数

H p ( q ) = − 1 N ∑ i = 1 N y i ⋅ l o g ( p ( y i ) ) + ( 1 − y i ) ⋅ l o g ( 1 − p ( y i ) ) H_p(q)=-\frac{1}{N}\sum_{i=1}^Ny_i\cdot log(p(y_i))+(1-y_i) \cdot log(1-p(y_i)) Hp(q)=−N1i=1∑Nyi⋅log(p(yi))+(1−yi)⋅log(1−p(yi))

对于公式的理解,y是样本点,p(y)是该样本为正样本的概率,log(p(y))可理解为对数概率。

Auc是Area Under Curve的首字母缩写,这里的Curve指的就是ROC曲线,AUC就是ROC曲线下面的面积,作为模型评价指标,他可以用来评价二分类模型。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve),它是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(敏感性)为纵坐标,假阳性率(1-特异性)为横坐标绘制的曲线。

相关推荐
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习
Kai HVZ6 小时前
《深度学习》——自然语言处理(NLP)
人工智能·深度学习·自然语言处理
C#Thread6 小时前
机器视觉--索贝尔滤波
人工智能·深度学习·计算机视觉
Zhouqi_Hua8 小时前
LLM论文笔记 12: Teaching Arithmetic to Small Transformers
论文阅读·人工智能·深度学习·神经网络·语言模型
wyg_0311138 小时前
用deepseek学大模型08-循环神经网络
人工智能·rnn·深度学习
Dymc8 小时前
【深度学习在图像配准中的应用与挑战】
人工智能·深度学习·图像配准
E_Magic_Cube8 小时前
AI工具篇:利用DeepSeek+Kimi 辅助生成综述汇报PPT
人工智能·深度学习·效率·ai工具·deepseek
North_D9 小时前
ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
空空转念9 小时前
目前(2025年2月)计算机视觉(CV)领域一些表现优异的深度学习模型
人工智能·深度学习·计算机视觉