jupyter ai 结合local llm 实现思路

参考链接:

jupyter ai develop 开发文档

https://jupyter-ai.readthedocs.io/en/latest/developers/index.html

langchain custom LLM 开发文档

https://python.langchain.com/v0.1/docs/modules/model_io/llms/custom_llm/

stackoverflow :intergrate Local LLM with jupyter ai question

https://stackoverflow.com/questions/78989389/jupyterai-local-llm-integration/78989646#78989646

作者krassowski blog ,关于jupyter lab 有117个post

https://stackoverflow.com/users/6646912/krassowski

====================================

思路

1。Briefly, define the CustomLLM with something like:

python 复制代码
from typing import Any, Dict, Iterator, List, Mapping, Optional

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk


class CustomLLM(LLM):

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        payload = ... # TODO: pass `prompt` to payload here
        # TODO: define `headers`
        response = requests.request(method="POST", url="10.1xx.1xx.50:8084/generate", headers=headers, data=payload)
        return response.text  # TODO: change it accordingly

    @property
    def _llm_type(self) -> str:
        return "custom"

2。 create MyProvider

python 复制代码
# my_package/my_provider.py
from jupyter_ai_magics import BaseProvider


class MyProvider(BaseProvider, CustomLLM):
    id = "my_provider"
    name = "My Provider"
    model_id_key = "model"
    models = [
        "your_model"
    ]
    def __init__(self, **kwargs):
        model_id = kwargs.get("model_id")
        # you can use `model_id` in `CustomLLM` to change models within provider
        super().__init__(**kwargs)

3。define an entrypoint 程序入口,配置pyproject.toml

python 复制代码
# my_package/pyproject.toml
[project]
name = "my_package"
version = "0.0.1"

[project.entry-points."jupyter_ai.model_providers"]
my-provider = "my_provider:MyProvider"

=================================

部署

bash 复制代码
cd mypackage/
pip install -e .
相关推荐
V搜xhliang024619 小时前
AI编程环境的快速部署及AI开发工具使用
人工智能·ai编程
算法熔炉19 小时前
深度学习面试八股文(1)——训练
人工智能·深度学习·面试
算法熔炉19 小时前
深度学习面试八股文(2)——训练
人工智能·深度学习·算法
测试人社区-千羽19 小时前
AI测试中的伦理考虑因素
运维·人工智能·opencv·测试工具·数据挖掘·自动化·开源软件
南龙大魔王19 小时前
spring ai Alibaba(SAA)学习(二)
java·人工智能·spring boot·学习·ai
Elastic 中国社区官方博客19 小时前
在 Google MCP Toolbox for Databases 中引入 Elasticsearch 支持
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
非著名架构师19 小时前
从预测到预调:疾风大模型如何驱动能源电力系统实现“气象自适应”调度?
大数据·人工智能·风光功率预测·高精度光伏功率预测模型·高精度气象数据·高精度天气预报数据·galeweather.cn
cici1587419 小时前
含风电场的十机24时系统机组出力优化算法
人工智能·算法·机器学习
Yeats_Liao19 小时前
CANN Samples(十九):特色场景:机器人 AI 绘画 手写识别等
人工智能·目标跟踪·机器人
亿坊电商19 小时前
AI数字人交互系统架构全解析:从多模态输入到实时渲染的闭环设计!
人工智能·系统架构·交互