jupyter ai 结合local llm 实现思路

参考链接:

jupyter ai develop 开发文档

https://jupyter-ai.readthedocs.io/en/latest/developers/index.html

langchain custom LLM 开发文档

https://python.langchain.com/v0.1/docs/modules/model_io/llms/custom_llm/

stackoverflow :intergrate Local LLM with jupyter ai question

https://stackoverflow.com/questions/78989389/jupyterai-local-llm-integration/78989646#78989646

作者krassowski blog ,关于jupyter lab 有117个post

https://stackoverflow.com/users/6646912/krassowski

====================================

思路

1。Briefly, define the CustomLLM with something like:

python 复制代码
from typing import Any, Dict, Iterator, List, Mapping, Optional

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk


class CustomLLM(LLM):

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        payload = ... # TODO: pass `prompt` to payload here
        # TODO: define `headers`
        response = requests.request(method="POST", url="10.1xx.1xx.50:8084/generate", headers=headers, data=payload)
        return response.text  # TODO: change it accordingly

    @property
    def _llm_type(self) -> str:
        return "custom"

2。 create MyProvider

python 复制代码
# my_package/my_provider.py
from jupyter_ai_magics import BaseProvider


class MyProvider(BaseProvider, CustomLLM):
    id = "my_provider"
    name = "My Provider"
    model_id_key = "model"
    models = [
        "your_model"
    ]
    def __init__(self, **kwargs):
        model_id = kwargs.get("model_id")
        # you can use `model_id` in `CustomLLM` to change models within provider
        super().__init__(**kwargs)

3。define an entrypoint 程序入口,配置pyproject.toml

python 复制代码
# my_package/pyproject.toml
[project]
name = "my_package"
version = "0.0.1"

[project.entry-points."jupyter_ai.model_providers"]
my-provider = "my_provider:MyProvider"

=================================

部署

bash 复制代码
cd mypackage/
pip install -e .
相关推荐
笨鸭先游3 分钟前
Android Studio的jks文件
android·ide·android studio
白光白光13 分钟前
大语言模型训练的两个阶段
人工智能·机器学习·语言模型
巷95539 分钟前
OpenCV图像金字塔详解:原理、实现与应用
人工智能·opencv·计算机视觉
科技小E1 小时前
WebRTC实时音视频通话技术EasyRTC嵌入式音视频通信SDK,助力智慧物流打造实时高效的物流管理体系
人工智能·音视频
BioRunYiXue1 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
IT古董2 小时前
【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
人工智能·机器学习
fytianlan2 小时前
机器学习 day6 -线性回归练习
人工智能·机器学习·线性回归
算家云2 小时前
通义千问席卷日本!开源界“卷王”阿里通义千问成为日本AI发展新基石
人工智能·开源·通义千问·算家云·国产ai·租算力,到算家云·日本ai
ai产品老杨3 小时前
AI赋能安全生产,推进数智化转型的智慧油站开源了。
前端·javascript·vue.js·人工智能·ecmascript
明月醉窗台3 小时前
[20250507] AI边缘计算开发板行业调研报告 (2024年最新版)
人工智能·边缘计算