BERT与CNN结合实现糖尿病相关医学问题多分类模型

完整源码项目包获取→点击文章末尾名片!

使用HuggingFace开发的Transformers库,使用BERT模型实现中文文本分类(二分类或多分类)

首先直接利用transformer.models.bert.BertForSequenceClassification()实现文本分类

然后手动实现BertModel + FC 实现上边函数。其中可以方便的更改参数和结构

然后实验了论文中将bert最后四层进行concat再maxpooling的方法,

最后实现了bert + CNN实现文本分类

模型使用的是哈工大chinese-bert-wwm,可以完全兼容BERT

下载:

git clone https://huggingface.co/hfl/chinese-bert-wwm

结果

除了第一个实验dropout_bert是0.1,其余是0.2. 剩下参数都一样。

训练3个epoch

模型

train/val acc

val acc

test acc

链接

会用内建BertForSequenceClassification

0.982

0.950

0.950

链接

自己实现Bert+fc 一层全连接层

0.982

0.948

0.954

链接

将Bert最后四层相concat然后maxpooling

0.977

0.946

0.951

链接

BERT+CNN

0.984

0.947

0.955

链接

  1. 官方的transformer.models.bert.BertForSequenceClassification()就是直接使用BertModel 再接一层全连接层实现的。第二个项目是为了方便自己修改网络结构,进行手动实现。效果差不多,可以自己修改接几层线形结构,但是实验了一层就够了。
  2. 根据参考2的论文,将BERT最后四层的CLS向量concat然后取max pooling可以让bert在分类问题上有更好的效果。在THUNews上测试可以提高0.4%相比bert。已经很大了相比其他方法而言。
  3. 我一直觉得bert后面接CNN和RNN等都不好,毕竟transformer就是改善这两类模型的,再接一层也好不到哪去。如果我理解不到位可以告诉我。我还实验了bert使用前四层的输出进行concat,效果acc也能达到0.80+,层数越深效果感觉真的不明显。bert+cnn/rnn等这个模型在参考3 中两年前就有人做过实验,写出来过,他实验的效果也是不如单纯的BERT。调了调cnn的大小,其实都差不多。

标签定义:

  • 0: Diagnosis(诊断)
  • 1: Treatment(治疗)
  • 2: Common Knowledge(常识)
  • 3: Healthy lifestyle(健康生活方式)
  • 4: Epidemiology(流行病学)
  • 5: Other(其他)

模型的实现包括以下几个部分:

  1. 数据处理与加载:如何加载文本数据并进行必要的预处理。
  2. 模型架构:
  • bert_lr:一个基于BERT的线性分类器模型。
  • bert_cnn:一个基于BERT与卷积神经网络(CNN)结合的模型。
  1. 训练过程:如何设置训练循环、优化器和损失函数。
  2. 评估与预测:模型在验证集和测试集上的评估,以及如何进行推理。
相关推荐
热心不起来的市民小周5 小时前
基于 RoBERTa + 多策略优化的中文商品名细粒度分类
人工智能·分类·数据挖掘
七芒星202314 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
拉姆哥的小屋17 小时前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
qq_3404740218 小时前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
MoRanzhi12031 天前
11. Pandas 数据分类与区间分组(cut 与 qcut)
人工智能·python·机器学习·数学建模·分类·数据挖掘·pandas
sensen_kiss1 天前
INT305 Machine Learning 机器学习 Pt.3二元分类和多类分类
大数据·机器学习·分类
罗小罗同学3 天前
覆盖9个癌种,基于11671张病理切片训练的模型登上Nature子刊,可精准“读出”分子标志物,突破传统分类局限
人工智能·深度学习·分类·数据挖掘·病理组学·医学人工智能·医工交叉
mooooon L3 天前
DAY 41 简单CNN-2025.10.5
人工智能·神经网络·cnn
Hcoco_me4 天前
YOLO入门教程(番外):卷积神经网络—图像卷积
深度学习·yolo·cnn
东方芷兰4 天前
LLM 笔记 —— 02 大语言模型能力评定
人工智能·笔记·python·神经网络·语言模型·自然语言处理·cnn