016、什么是损失函数

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请参考这里

上一节介绍了训练的大致过程。

一个模型在训练的过程中,每一轮都会输出本轮的预测值,那么如何将本轮的预测值与真实值进行对比呢?

这就要用到损失函数(Loss function)。

什么是损失函数?

损失函数是用来衡量模型预测结果与真实标签(ground truth)之间差别的函数。

一般而言,损失函数会接收两个输入,一个是本轮的预测值,另一个是标签的真实值。通过一定的算法来将预测值和真实值之间的差别计算出来。

损失函数的输出被定义为损失值(loss值),Loss值越大,说明预测值与真实值之间的差别越大。

因此神经网络在训练时,每轮训练的目的就是降低loss值,直到将loss值降低到为零,或者接近零。如此一来就说明模型训练收敛,训练过程也就结束了,这便是损失函数的作用。

上图展示了训练过程中 loss 值降低的曲线示意图。

之所以损失函数需要输出一个loss值,是因为在每次训练时都需要一个参数来衡量结果。

除此之外,损失函数还有其他的几个作用。

  • 损失函数反映了模型的预测能力。loss值越小,预测能力越强,我们还通过优化损失函数,来调整模型自身的参数,从而更好地拟合训练数据。

  • 损失函数可以根据任务的不同来选择。不同任务可能会有不同的损失函数选择,例如分类问题可以使用交叉熵损失函数,回归问题可以使用均方误差损失函数。

常见的损失函数

  • 均方误差(Mean Squared Error, MSE):适用于回归问题,计算模型输出与真实标签之间的平均平方差。

  • 交叉熵损失函数(Cross-Entropy Loss):适用于分类问题,特别是多类别分类问题。包括二元交叉熵损失函数和多元交叉熵损失函数,用于衡量模型输出与真实标签之间的差异。可参考:为什么要用交叉熵作为损失函数。

  • 对数损失函数(Log Loss 或 Binary Cross-Entropy):用于二分类问题,通常用于二分类问题中的概率输出模型,如逻辑回归。

  • KL 散度(Kullback-Leibler Divergence, KLD):用于衡量两个概率分布之间的差异,常用于生成模型中的损失函数,如变分自编码器。

  • 余弦相似度损失函数(Cosine Similarity Loss):适用于度量两个向量之间的相似性,常用于人脸识别等相似性学习任务。可参考:余弦相似度

以上只是列举了一些常见的损失函数,在实际中需要根据具体的任务和模型结构,来设计和选择最适合的损失函数。

后面会有一个小的示例,用来完成一个模型的训练,到时候可以关注一下loss值的变化。

如果你想学习 AI ,欢迎来添加我的微信 (vx: ddcsggcs ),会有很多好玩的AI技术分享,可以咨询、也可以围观朋友圈呀!欢迎查看我的专栏 >>1. 专栏:计算机视觉入门与调优 , 2. 专栏:Transformer 通关与大模型实战

相关推荐
IT从业者张某某15 分钟前
机器学习-04-分类算法-03KNN算法案例
算法·机器学习·分类
chen_song_19 分钟前
WebRTC的ICE之TURN协议的交互流程中继转发Relay媒体数据的turnserver的测试
算法·音视频·webrtc·交互·媒体
蒙奇D索大35 分钟前
【数据结构】图解图论:度、路径、连通性,五大概念一网打尽
数据结构·考研·算法·图论·改行学it
uhakadotcom39 分钟前
2025年春招:如何使用DeepSeek + 豆包优化简历,轻松敲开心仪公司的大门
算法·面试·github
小白狮ww43 分钟前
Retinex 算法 + MATLAB 软件,高效率完成图像去雾处理
开发语言·人工智能·算法·matlab·自然语言处理·图像识别·去雾处理
trust Tomorrow2 小时前
每日一题-力扣-2278. 字母在字符串中的百分比 0331
算法·leetcode
Lecea_L2 小时前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
Tony882 小时前
热题100 - 394. 字符串解码
java·算法
Lecea_L2 小时前
🔍 找到数组里的“节奏感”:最长等差子序列
java·算法
是Dream呀2 小时前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法