016、什么是损失函数

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请参考这里

上一节介绍了训练的大致过程。

一个模型在训练的过程中,每一轮都会输出本轮的预测值,那么如何将本轮的预测值与真实值进行对比呢?

这就要用到损失函数(Loss function)。

什么是损失函数?

损失函数是用来衡量模型预测结果与真实标签(ground truth)之间差别的函数。

一般而言,损失函数会接收两个输入,一个是本轮的预测值,另一个是标签的真实值。通过一定的算法来将预测值和真实值之间的差别计算出来。

损失函数的输出被定义为损失值(loss值),Loss值越大,说明预测值与真实值之间的差别越大。

因此神经网络在训练时,每轮训练的目的就是降低loss值,直到将loss值降低到为零,或者接近零。如此一来就说明模型训练收敛,训练过程也就结束了,这便是损失函数的作用。

上图展示了训练过程中 loss 值降低的曲线示意图。

之所以损失函数需要输出一个loss值,是因为在每次训练时都需要一个参数来衡量结果。

除此之外,损失函数还有其他的几个作用。

  • 损失函数反映了模型的预测能力。loss值越小,预测能力越强,我们还通过优化损失函数,来调整模型自身的参数,从而更好地拟合训练数据。

  • 损失函数可以根据任务的不同来选择。不同任务可能会有不同的损失函数选择,例如分类问题可以使用交叉熵损失函数,回归问题可以使用均方误差损失函数。

常见的损失函数

  • 均方误差(Mean Squared Error, MSE):适用于回归问题,计算模型输出与真实标签之间的平均平方差。

  • 交叉熵损失函数(Cross-Entropy Loss):适用于分类问题,特别是多类别分类问题。包括二元交叉熵损失函数和多元交叉熵损失函数,用于衡量模型输出与真实标签之间的差异。可参考:为什么要用交叉熵作为损失函数。

  • 对数损失函数(Log Loss 或 Binary Cross-Entropy):用于二分类问题,通常用于二分类问题中的概率输出模型,如逻辑回归。

  • KL 散度(Kullback-Leibler Divergence, KLD):用于衡量两个概率分布之间的差异,常用于生成模型中的损失函数,如变分自编码器。

  • 余弦相似度损失函数(Cosine Similarity Loss):适用于度量两个向量之间的相似性,常用于人脸识别等相似性学习任务。可参考:余弦相似度

以上只是列举了一些常见的损失函数,在实际中需要根据具体的任务和模型结构,来设计和选择最适合的损失函数。

后面会有一个小的示例,用来完成一个模型的训练,到时候可以关注一下loss值的变化。

如果你想学习 AI ,欢迎来添加我的微信 (vx: ddcsggcs ),会有很多好玩的AI技术分享,可以咨询、也可以围观朋友圈呀!欢迎查看我的专栏 >>1. 专栏:计算机视觉入门与调优 , 2. 专栏:Transformer 通关与大模型实战

相关推荐
带多刺的玫瑰7 分钟前
Leecode刷题C语言之或值至少K的最短子数组①
java·c语言·算法
心 -10 分钟前
七大排序算法
java·算法·排序算法
大风起兮1227 分钟前
C语言中NUL和NULL、‘\0‘之间的关系
c语言·开发语言·算法
啵啵鱼爱吃小猫咪30 分钟前
Franka例程学习——examples_common
人工智能·python·算法·ubuntu·机器人
Wang's Blog1 小时前
数据结构与算法之栈: LeetCode 71. 简化路径 (Ts版)
算法·leetcode
多多*1 小时前
双端队列实战 实现滑动窗口 用LinkedList的基类双端队列Deque实现 洛谷[P1886]
java·开发语言·jvm·数据结构·redis·算法
笔写落去2 小时前
统计学习方法(第二版) 第七章 支持向量机(第二节)
人工智能·算法·机器学习·支持向量机
笔写落去2 小时前
统计学习方法(第二版) 第七章 支持向量机 (第四节)
算法·机器学习·支持向量机
Naion2 小时前
统计学习算法——支持向量机的基本概念
学习·算法·支持向量机
我要学编程(ಥ_ಥ)3 小时前
常见链表专题相关算法
数据结构·算法·链表