【RAG学习】如何使用大型语言模型?提示工程、RAG、微调或预训练,什么时候需要哪个

What are the available options for customizing a Large Language Model (LLM) with data, and which method---prompt engineering, RAG, fine-tuning, or pretraining---is considered the most effective?

使用数据定制大型语言模型(LLM)有哪些可用选项,哪种方法-提示工程、RAG、微调或预训练-被认为是最有效的?

|-------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|
| 选项 | 描述 | 优点 | 缺点 |
| Prompt Engineering : 提示工程: | 制作特定的提示,引导模型生成所需的输出。 | 实施简单快速,无需额外训练。 | 受模型能力的限制,可能需要反复试验才能找到有效的提示。 |
| Retrieval-Augmented Generation (RAG) : 检索增强生成(RAG): | 在推理过程中使用外部知识源增强模型,以提高响应的相关性和准确性。 | 通过实时的相关信息增强模型的响应,减少对静态训练数据的依赖。 | 需要获得外部知识来源并与之整合,这可能具有挑战性。 |
| Fine-tuning : 微调: | 通过在特定领域示例的小数据集上训练模型,使其适应特定任务或领域。 | 允许模型学习特定于领域的语言和行为,可能会提高性能。 | 需要特定于域的数据,并且可能在计算上很昂贵,特别是对于大型模型。 |
| Pretraining : 预训练: | 从头开始或在大型通用数据集上训练模型,以学习基本的语言理解。 | 为进一步定制和调整提供了坚实的基础。 | 需要大量的通用数据和计算资源。 |

Which Method is Best? 哪种方法最好?

The best method depends on your specific requirements:
最好的方法取决于您的具体要求:

  • Use Prompt Engineering if you need a quick and simple solution for specific tasks or queries.
    如果您需要针对特定任务或查询的快速而简单的解决方案,请使用Prompt Engineering。
  • Use RAG if you need to enhance your model's responses with real-time, relevant information from external sources.
    如果您需要使用来自外部源的实时相关信息来增强模型的响应,请使用RAG。
  • Use Fine-tuning if you have domain-specific data and want to improve the model's performance on specific tasks.
    如果您有特定于领域的数据,并希望提高模型在特定任务上的性能,请使用微调。
  • Use Pretraining if you need a strong foundation for further customization and adaptation.
    如果您需要为进一步定制和调整打下坚实的基础,请使用预训练。

参考资料:https://www.geeksforgeeks.org/what-is-retrieval-augmented-generation-rag/

相关推荐
Narrastory10 小时前
最大似然估计,香农熵,交叉熵与KL散度的详细解读与实现
人工智能·机器学习
安徽正LU o561-6o623o710 小时前
露-人体生理实验整体解决方案 机能实验室整体解决方案 行为学实验室整体解决方案 动物行为学整体解决方案
人工智能
拖拖76510 小时前
重读经典:Karpathy 的《循环神经网络不可思议的有效性》与代码实战
人工智能
阿恩.77010 小时前
前沿科技计算机国际期刊征稿:电子、AI与网络计算
人工智能·经验分享·笔记·计算机网络·考研·云计算
ZsTs11910 小时前
《2025 AI 自动化新高度:一套代码搞定 iOS、Android 双端,全平台 AutoGLM 部署实战》
前端·人工智能·全栈
锐学AI10 小时前
从零开始学LangChain(二):LangChain的核心组件 - Agents
人工智能·python
Guheyunyi10 小时前
安全风险监测预警系统如何重塑企业安全防线
大数据·人工智能·科技·安全·信息可视化
GIS数据转换器10 小时前
空天地一体化边坡监测及安全预警系统
大数据·人工智能·安全·机器学习·3d·无人机
Dev7z10 小时前
YOLO11 公共区域违法发传单检测系统设计与实现
人工智能·计算机视觉·目标跟踪
王中阳Go10 小时前
06 Go Eino AI应用开发实战 | Eino 框架核心架构
人工智能·后端·go