【RAG学习】如何使用大型语言模型?提示工程、RAG、微调或预训练,什么时候需要哪个

What are the available options for customizing a Large Language Model (LLM) with data, and which method---prompt engineering, RAG, fine-tuning, or pretraining---is considered the most effective?

使用数据定制大型语言模型(LLM)有哪些可用选项,哪种方法-提示工程、RAG、微调或预训练-被认为是最有效的?

|-------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|
| 选项 | 描述 | 优点 | 缺点 |
| Prompt Engineering : 提示工程: | 制作特定的提示,引导模型生成所需的输出。 | 实施简单快速,无需额外训练。 | 受模型能力的限制,可能需要反复试验才能找到有效的提示。 |
| Retrieval-Augmented Generation (RAG) : 检索增强生成(RAG): | 在推理过程中使用外部知识源增强模型,以提高响应的相关性和准确性。 | 通过实时的相关信息增强模型的响应,减少对静态训练数据的依赖。 | 需要获得外部知识来源并与之整合,这可能具有挑战性。 |
| Fine-tuning : 微调: | 通过在特定领域示例的小数据集上训练模型,使其适应特定任务或领域。 | 允许模型学习特定于领域的语言和行为,可能会提高性能。 | 需要特定于域的数据,并且可能在计算上很昂贵,特别是对于大型模型。 |
| Pretraining : 预训练: | 从头开始或在大型通用数据集上训练模型,以学习基本的语言理解。 | 为进一步定制和调整提供了坚实的基础。 | 需要大量的通用数据和计算资源。 |

Which Method is Best? 哪种方法最好?

The best method depends on your specific requirements:
最好的方法取决于您的具体要求:

  • Use Prompt Engineering if you need a quick and simple solution for specific tasks or queries.
    如果您需要针对特定任务或查询的快速而简单的解决方案,请使用Prompt Engineering。
  • Use RAG if you need to enhance your model's responses with real-time, relevant information from external sources.
    如果您需要使用来自外部源的实时相关信息来增强模型的响应,请使用RAG。
  • Use Fine-tuning if you have domain-specific data and want to improve the model's performance on specific tasks.
    如果您有特定于领域的数据,并希望提高模型在特定任务上的性能,请使用微调。
  • Use Pretraining if you need a strong foundation for further customization and adaptation.
    如果您需要为进一步定制和调整打下坚实的基础,请使用预训练。

参考资料:https://www.geeksforgeeks.org/what-is-retrieval-augmented-generation-rag/

相关推荐
美狐美颜sdk1 小时前
直播美颜SDK特效功能实战:从API调用到效果调优的全过程
人工智能·1024程序员节·美颜sdk·直播美颜sdk·第三方美颜sdk
sali-tec4 小时前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家5 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客5 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤5 小时前
机器学习第二阶段
人工智能·机器学习
用什么都重名6 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏6 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时7 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.8248 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub8 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp