【RAG学习】如何使用大型语言模型?提示工程、RAG、微调或预训练,什么时候需要哪个

What are the available options for customizing a Large Language Model (LLM) with data, and which method---prompt engineering, RAG, fine-tuning, or pretraining---is considered the most effective?

使用数据定制大型语言模型(LLM)有哪些可用选项,哪种方法-提示工程、RAG、微调或预训练-被认为是最有效的?

|-------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|
| 选项 | 描述 | 优点 | 缺点 |
| Prompt Engineering : 提示工程: | 制作特定的提示,引导模型生成所需的输出。 | 实施简单快速,无需额外训练。 | 受模型能力的限制,可能需要反复试验才能找到有效的提示。 |
| Retrieval-Augmented Generation (RAG) : 检索增强生成(RAG): | 在推理过程中使用外部知识源增强模型,以提高响应的相关性和准确性。 | 通过实时的相关信息增强模型的响应,减少对静态训练数据的依赖。 | 需要获得外部知识来源并与之整合,这可能具有挑战性。 |
| Fine-tuning : 微调: | 通过在特定领域示例的小数据集上训练模型,使其适应特定任务或领域。 | 允许模型学习特定于领域的语言和行为,可能会提高性能。 | 需要特定于域的数据,并且可能在计算上很昂贵,特别是对于大型模型。 |
| Pretraining : 预训练: | 从头开始或在大型通用数据集上训练模型,以学习基本的语言理解。 | 为进一步定制和调整提供了坚实的基础。 | 需要大量的通用数据和计算资源。 |

Which Method is Best? 哪种方法最好?

The best method depends on your specific requirements:
最好的方法取决于您的具体要求:

  • Use Prompt Engineering if you need a quick and simple solution for specific tasks or queries.
    如果您需要针对特定任务或查询的快速而简单的解决方案,请使用Prompt Engineering。
  • Use RAG if you need to enhance your model's responses with real-time, relevant information from external sources.
    如果您需要使用来自外部源的实时相关信息来增强模型的响应,请使用RAG。
  • Use Fine-tuning if you have domain-specific data and want to improve the model's performance on specific tasks.
    如果您有特定于领域的数据,并希望提高模型在特定任务上的性能,请使用微调。
  • Use Pretraining if you need a strong foundation for further customization and adaptation.
    如果您需要为进一步定制和调整打下坚实的基础,请使用预训练。

参考资料:https://www.geeksforgeeks.org/what-is-retrieval-augmented-generation-rag/

相关推荐
gorgeous(๑>؂<๑)3 小时前
【ICLR26-金玥明-新国立】MedAgent-Pro:通过推理智能体工作流实现基于证据的多模态医疗诊断
人工智能
hqyjzsb3 小时前
企业AI人才库的搭建体系与长效运营管理方案
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·改行学it
码农小韩4 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
拔刀能留住落樱吗、4 小时前
AI 落地避坑实战(2026 最新):200 + 项目复盘,数据 + 方案 + 代码思路,少亏 50 万
人工智能
龙山云仓4 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
Dcs4 小时前
花 200 美刀买“黑盒”?Claude Code 这波更新,把程序员当傻子了吧…
人工智能·ai编程·claude
Mr_Lucifer4 小时前
成本大幅降低、Agent效率显著提升:CodeFlicker 接入 MiniMax M2.5 与 GLM-5
人工智能·ai编程·产品
Jonathan Star4 小时前
Ant Design (antd) Form 组件中必填项的星号(*)从标签左侧移到右侧
人工智能·python·tensorflow
挂科边缘5 小时前
YOLOv12环境配置,手把手教你使用YOLOv12训练自己的数据集和推理(附YOLOv12网络结构图),全文最详细教程
人工智能·深度学习·yolo·目标检测·计算机视觉·yolov12
deep_drink5 小时前
【论文精读(三)】PointMLP:大道至简,无需卷积与注意力的纯MLP点云网络 (ICLR 2022)
人工智能·pytorch·python·深度学习·3d·point cloud