【机器学习:二十、拆分原始训练集】

1. 如何改进模型

模型的改进需求

在机器学习任务中,模型性能的提升通常受限于训练数据、模型架构、优化方法及超参数设置等。模型改进的目标是在测试数据上表现更优,避免过拟合或欠拟合。

常见的改进方向

  1. 增大训练数据集:通过数据增强或获取更多样本提高模型泛化能力。
  2. 改进模型结构:例如增加网络层数、调整神经元数目或选择更适合任务的架构。
  3. 优化损失函数:根据任务特点选择合适的损失函数,例如交叉熵损失或均方误差。
  4. 调整超参数:包括学习率、批量大小、正则化参数等。

拆分训练集的重要性

模型改进离不开有效的评估方法。合理拆分训练集、验证集和测试集是评估模型性能的基础,确保模型在未见数据上的泛化能力。


2. 二拆分:训练集、测试集

数学约定

将数据集分为训练集(training set)和测试集(test set),通常比例为80%:20%或70%:30%。设总样本数为 N N N ,其中训练集大小为 N t r a i n N_{train} Ntrain ,测试集大小为 N t e s t N_{test} Ntest 。有以下关系:

N t r a i n + N t e s t = N N_{train} + N_{test} = N Ntrain+Ntest=N

二拆分的意义

  1. 训练集用于模型训练,即参数学习。
  2. 测试集用于评估模型性能,检测模型是否过拟合。

如何实现二拆分

在实际操作中,常通过库函数实现:

python 复制代码
from sklearn.model_selection import train_test_split

# 示例数据
X, y = get_dataset()

# 二拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

评价标准

通过测试误差(test error)判断模型在未见数据上的性能。常用指标包括准确率、F1分数、AUC值等。


3. 二拆分原始样本:训练集、测试集

过拟合与欠拟合

  • 过拟合:训练误差低,但测试误差高。
  • 欠拟合:训练误差和测试误差均较高。

通过合理拆分数据并比较训练误差和测试误差,可以初步判断模型状态。

案例分析

  1. 若训练误差远低于测试误差,则模型可能过拟合。
  2. 若两者误差均高,则模型可能欠拟合。

4. 通过"训练误差"和"测试误差"评估模型性能

误差定义

  • 训练误差:模型在训练数据上的平均损失值。
  • 测试误差:模型在测试数据上的平均损失值。

评估方法

通过绘制训练误差和测试误差随训练轮次的变化曲线,可以直观观察模型的学习状态。

曲线分析

  • 若训练误差下降而测试误差上升,表明模型过拟合。
  • 若训练误差和测试误差均趋于平稳,且误差较低,则表明模型性能较好。

5. 三拆分:训练集、验证集、测试集

数学约定

将数据集分为训练集(training set)、验证集(validation set)和测试集(test set),比例通常为70%:15%:15%。

三拆分的意义

  • 训练集:用于模型训练。
  • 验证集:用于超参数调优和模型选择。
  • 测试集:用于最终性能评估。

实现三拆分

python 复制代码
from sklearn.model_selection import train_test_split

# 第一次拆分:训练集和临时集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42)

# 第二次拆分:验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)

6. 总结与建议

合理拆分数据集是机器学习建模的重要环节。通过二拆分或三拆分,能够有效避免数据泄露,准确评估模型性能。建议在拆分数据时保持随机性,并通过多次实验验证模型的稳定性和鲁棒性。

相关推荐
赛逸展张胜3 分钟前
广东打造低空经济发展平台,CES Asia 2025助力科技腾飞
人工智能·科技·智慧城市
AIGC大时代13 分钟前
学术内容写作ChatGPT提示词分享
人工智能·深度学习·chatgpt·prompt·aigc·ai写作
知难行难15 分钟前
Coursera四门课备考入学考试
人工智能
说私域28 分钟前
数字化转型的新引擎:开源AI智能名片2+1链动模式S2B2C商城小程序源码的应用与实践
人工智能·小程序·开源
剑盾云安全专家1 小时前
如何让AI助力制作PPT,轻松实现PPT智能生成
人工智能·科技·aigc·powerpoint·软件
罗小罗同学1 小时前
北邮团队在Nature Medicine发表MedFound——辅助疾病诊断的通用医学语言模型|顶刊速递·25-01-15
人工智能·语言模型·自然语言处理·医学人工智能·医工交叉
bielaile_leisigoule1 小时前
自然语言处理(GloVe):原理、特点、应用、技术、相关学术分享
人工智能·自然语言处理
whaosoft-1431 小时前
w~Transformer~合集11
人工智能
点云SLAM2 小时前
CVPR 2024 人体姿态估计总汇(3D人体、手语翻译和人体网格恢复/重建等)
人工智能·深度学习·计算机视觉·cvpr·姿态估计
lovelin+v175030409662 小时前
基于API接口的电商数据可视化探索与实践
大数据·人工智能·爬虫·python·数据分析