【机器学习:二十、拆分原始训练集】

1. 如何改进模型

模型的改进需求

在机器学习任务中,模型性能的提升通常受限于训练数据、模型架构、优化方法及超参数设置等。模型改进的目标是在测试数据上表现更优,避免过拟合或欠拟合。

常见的改进方向

  1. 增大训练数据集:通过数据增强或获取更多样本提高模型泛化能力。
  2. 改进模型结构:例如增加网络层数、调整神经元数目或选择更适合任务的架构。
  3. 优化损失函数:根据任务特点选择合适的损失函数,例如交叉熵损失或均方误差。
  4. 调整超参数:包括学习率、批量大小、正则化参数等。

拆分训练集的重要性

模型改进离不开有效的评估方法。合理拆分训练集、验证集和测试集是评估模型性能的基础,确保模型在未见数据上的泛化能力。


2. 二拆分:训练集、测试集

数学约定

将数据集分为训练集(training set)和测试集(test set),通常比例为80%:20%或70%:30%。设总样本数为 N N N ,其中训练集大小为 N t r a i n N_{train} Ntrain ,测试集大小为 N t e s t N_{test} Ntest 。有以下关系:

N t r a i n + N t e s t = N N_{train} + N_{test} = N Ntrain+Ntest=N

二拆分的意义

  1. 训练集用于模型训练,即参数学习。
  2. 测试集用于评估模型性能,检测模型是否过拟合。

如何实现二拆分

在实际操作中,常通过库函数实现:

python 复制代码
from sklearn.model_selection import train_test_split

# 示例数据
X, y = get_dataset()

# 二拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

评价标准

通过测试误差(test error)判断模型在未见数据上的性能。常用指标包括准确率、F1分数、AUC值等。


3. 二拆分原始样本:训练集、测试集

过拟合与欠拟合

  • 过拟合:训练误差低,但测试误差高。
  • 欠拟合:训练误差和测试误差均较高。

通过合理拆分数据并比较训练误差和测试误差,可以初步判断模型状态。

案例分析

  1. 若训练误差远低于测试误差,则模型可能过拟合。
  2. 若两者误差均高,则模型可能欠拟合。

4. 通过"训练误差"和"测试误差"评估模型性能

误差定义

  • 训练误差:模型在训练数据上的平均损失值。
  • 测试误差:模型在测试数据上的平均损失值。

评估方法

通过绘制训练误差和测试误差随训练轮次的变化曲线,可以直观观察模型的学习状态。

曲线分析

  • 若训练误差下降而测试误差上升,表明模型过拟合。
  • 若训练误差和测试误差均趋于平稳,且误差较低,则表明模型性能较好。

5. 三拆分:训练集、验证集、测试集

数学约定

将数据集分为训练集(training set)、验证集(validation set)和测试集(test set),比例通常为70%:15%:15%。

三拆分的意义

  • 训练集:用于模型训练。
  • 验证集:用于超参数调优和模型选择。
  • 测试集:用于最终性能评估。

实现三拆分

python 复制代码
from sklearn.model_selection import train_test_split

# 第一次拆分:训练集和临时集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42)

# 第二次拆分:验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)

6. 总结与建议

合理拆分数据集是机器学习建模的重要环节。通过二拆分或三拆分,能够有效避免数据泄露,准确评估模型性能。建议在拆分数据时保持随机性,并通过多次实验验证模型的稳定性和鲁棒性。

相关推荐
双翌视觉17 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中18 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海18 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥18 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在18 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星19 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin19 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群19 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸19 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI19 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai