题目分类
递归三部曲,以后看到二叉树,看到递归,都会想:
返回值、参数是什么?终止条件是什么?单层逻辑是什么?
二叉树的理论基础
二叉树的遍历方式
深度优先遍历
递归
144. 二叉树的前序遍历 - 力扣(LeetCode)
145.二叉树的后序遍历(opens new window)
94.二叉树的中序遍历
python
# 前序遍历-递归-LC144_二叉树的前序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:#根 左 右
def dfs(self,node,ans):#depth-first search
if node is None:
return
ans.append(node.val)
self.dfs(node.left,ans)
self.dfs(node.right,ans)
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
ans=[]
self.dfs(root,ans)
return ans
# 中序遍历-递归-LC94_二叉树的中序遍历
class Solution:#左 根 右
def dfs(self,node,ans):
if node is None:
return
self.dfs(node.left,ans)
ans.append(node.val)
self.dfs(node.right,ans)
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
ans=[]
self.dfs(root,ans)
return ans
# 后序遍历-递归-LC94_二叉树的中序遍历
class Solution:#左 右 根
def dfs(self,node,ans):#depth-first search
if node is None:
return
self.dfs(node.left,ans)
self.dfs(node.right,ans)
ans.append(node.val)
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
ans=[]
self.dfs(root,ans)
return ans
迭代
为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?
在栈与队列:匹配问题都是栈的强项 (opens new window)中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
动画如下:
中序遍历(迭代法)
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
- 处理:将元素放进result数组中
- 访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
动画如下:
后序遍历(迭代法)
再来看后序遍历,先序遍历是中左右,后序遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:#根 左 右 -迭代法前序遍历
def preorderTraversal(self, root: TreeNode) -> List[int]:
# 根结点为空则返回空列表
if not root:
return []
stack = [root]
result = []
while stack:
node = stack.pop()
# 中结点先处理
result.append(node.val)
# 右孩子先入栈
if node.right:
stack.append(node.right)
# 左孩子后入栈
if node.left:
stack.append(node.left)
return result
# 中序遍历-迭代-LC94_二叉树的中序遍历
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
if not root:
return []
stack = [] # 不能提前将root节点加入stack中
result = []
cur = root
while cur or stack:
# 先迭代访问最底层的左子树节点
if cur:
stack.append(cur)
cur = cur.left
# 到达最左节点后处理栈顶节点
else:
cur = stack.pop()
result.append(cur.val)
# 取栈顶元素右节点
cur = cur.right
return result
# 后序遍历-迭代-LC145_二叉树的后序遍历
class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
if not root:
return []
stack = [root]
result = []
while stack:
node = stack.pop()
# 中节点先处理
result.append(node.val)
# 左孩子先入栈
if node.left:
stack.append(node.left)
# 右孩子后入栈
if node.right:
stack.append(node.right)
# 将最终的数组翻转
return result[::-1]
二叉树的层序遍历
102.二叉树的层序遍历
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
使用队列实现二叉树广度优先遍历,动画如下:
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root:
return []
queue = collections.deque()
queue.append(root)
ans = []
while queue:
temp = []
len_size = len(queue)
for i in range(len_size):
node = queue.popleft()
temp.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
ans.append(temp)
return ans
199.二叉树的右视图
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
ans=[]
queue=collections.deque()
queue.append(root)
while queue:
len_size=len(queue)
for i in range(len_size):
node=queue.popleft()
if i == len_size - 1:
ans.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return ans
637.二叉树的层平均值
给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
if not root:
return []
ans=[]
queue=collections.deque()
queue.append(root)
while queue:
temp=[]
for _ in range(len(queue)):
node=queue.popleft()
temp.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
ans.append(temp)
l=[]
for i in ans:
sum=0
for j in i:
sum+=j
l.append(sum/(len(i)))
return l
429.N叉树的层序遍历
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
例如,给定一个 3叉树 :
返回其层序遍历:
[ [1], [3,2,4], [5,6] ]
python
# Definition for a Node.
'''
class Node:
def __init__(self, val: Optional[int] = None, children: Optional[List['Node']] = None):
self.val = val
self.children = children
'''
class Solution:
def levelOrder(self, root: 'Node') -> List[List[int]]:
if not root:
return []
ans=[]
queue=collections.deque()
queue.append(root)
while queue:
len_size=len(queue)
temp=[]
for i in range(len_size):
node=queue.popleft()
temp.append(node.val)
for child in node.children:
queue.append(child)
ans.append(temp)
return ans
515.在每个树行中找最大值
您需要在二叉树的每一行中找到最大的值。
python
class Solution:
def largestValues(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
ans=[]
queue=collections.deque()
queue.append(root)
while queue:
len_size=len(queue)
max_val=float('-inf')
for _ in range(len_size):
node=queue.popleft()
max_val=max(node.val,max_val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
ans.append(max_val)
return ans
116.填充每个节点的下一个右侧节点指针
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
python
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
#在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了
class Solution:
def connect(self, root: 'Optional[Node]') -> 'Optional[Node]':
if not root:
return root
queue=collections.deque()
queue.append(root)
while queue:
len_size=len(queue)
pre=None
for _ in range(len_size):
node=queue.popleft()
if pre:
pre.next=node
pre=node
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return root
104.二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
返回它的最大深度 3 。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if not root:
return 0
depth = 0
queue = collections.deque([root])
while queue:
depth += 1
for _ in range(len(queue)):
node = queue.popleft()
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return depth
111.二叉树的最小深度
相对于 104.二叉树的最大深度 ,本题还也可以使用层序遍历的方式来解决,思路是一样的。
需要注意的是,只有当左右孩子都为空的时候,才说明遍历的最低点了。如果其中一个孩子为空则不是最低点
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root:
return 0
depth = 0
queue = collections.deque([root])
while queue:
depth += 1
for _ in range(len(queue)):
node = queue.popleft()
if not node.left and not node.right:
return depth
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return depth
226.翻转二叉树
翻转一棵二叉树。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if not root:
return None
root.left, root.right = root.right, root.left
self.invertTree(root.left)
self.invertTree(root.right)
return root
101. 对称二叉树
给定一个二叉树,检查它是否是镜像对称的。
python
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
if not root:
return True
return self.compare(root.left, root.right)
def compare(self, left, right):
#首先排除空节点的情况
if left == None and right != None: return False
elif left != None and right == None: return False
elif left == None and right == None: return True
#排除了空节点,再排除数值不相同的情况
elif left.val != right.val: return False
#此时就是:左右节点都不为空,且数值相同的情况
#此时才做递归,做下一层的判断
outside = self.compare(left.left, right.right) #左子树:左、 右子树:右
inside = self.compare(left.right, right.left) #左子树:右、 右子树:左
isSame = outside and inside #左子树:中、 右子树:中 (逻辑处理)
return isSame
222.完全二叉树的节点个数
给出一个完全二叉树,求出该树的节点个数。
示例 1:
- 输入:root = [1,2,3,4,5,6]
- 输出:6
示例 2:
- 输入:root = []
- 输出:0
示例 3:
- 输入:root = [1]
- 输出:1
提示:
- 树中节点的数目范围是[0, 5 * 10^4]
- 0 <= Node.val <= 5 * 10^4
- 题目数据保证输入的树是 完全二叉树
python
#暴力
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
return self.getNum(root)
def getNum(self,root):
if not root:
return 0
leftNum=self.getNum(root.left)
rightNum=self.getNum(root.right)
return leftNum+rightNum+1
#完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。
#对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。
#对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以#按照情况1来计算。
#可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
left=root.left
right=root.right
leftDepth,rightDepth=0,0
while left:
left=left.left
leftDepth+=1
while right:
right=right.right
rightDepth+=1
if leftDepth==rightDepth:
return 2**(leftDepth+1)-1
return self.countNodes(root.left)+self.countNodes(root.right)+1
110.平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
返回 true 。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
return self.getHight(root)!=-1
def getHight(self,node):
if not node:
return 0
leftHight=self.getHight(node.left)
if leftHight==-1:
return -1
rightHight=self.getHight(node.right)
if rightHight==-1:
return -1
if abs(leftHight-rightHight)>1:
return -1
return max(leftHight,rightHight)+1
257. 二叉树的所有路径
给定一个二叉树,返回所有从根节点到叶子节点的路径。
说明: 叶子节点是指没有子节点的节点。
示例:
python
class Solution:
def traversal(self, cur, path, result):
path.append(cur.val) # 中
if not cur.left and not cur.right: # 到达叶子节点
sPath = '->'.join(map(str, path))
result.append(sPath)
return
if cur.left: # 左
self.traversal(cur.left, path, result)
path.pop() # 回溯
if cur.right: # 右
self.traversal(cur.right, path, result)
path.pop() # 回溯
def binaryTreePaths(self, root):
result = []
path = []
if not root:
return result
self.traversal(root, path, result)
return result
404.左叶子之和
计算给定二叉树的所有左叶子之和。
示例:
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumOfLeftLeaves(self, root):
if root is None:
return 0
if root.left is None and root.right is None:
return 0
leftValue = self.sumOfLeftLeaves(root.left) # 左
if root.left and not root.left.left and not root.left.right: # 左子树是左叶子的情况
leftValue = root.left.val
rightValue = self.sumOfLeftLeaves(root.right) # 右
sum_val = leftValue + rightValue # 中
return sum_val
513.找树左下角的值
给定一个二叉树,在树的最后一行找到最左边的值。
示例 1:
本题使用层序遍历再合适不过了,比递归要好理解得多!
只需要记录最后一行第一个节点的数值就可以了。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def findBottomLeftValue(self, root: Optional[TreeNode]) -> int:
from collections import deque
queue=deque()
queue.append(root)
ans=0
while queue:
len_size=len(queue)
for i in range(len_size):
if i==0:
ans=queue[0].val
node=queue.popleft()
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return ans
112. 路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例: 给定如下二叉树,以及目标和 sum = 22,
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def traversal(self, cur: TreeNode, count: int) -> bool:
if not cur.left and not cur.right and count == 0: # 遇到叶子节点,并且计数为0
return True
if not cur.left and not cur.right: # 遇到叶子节点直接返回
return False
if cur.left: # 左
count -= cur.left.val
if self.traversal(cur.left, count): # 递归,处理节点
return True
count += cur.left.val # 回溯,撤销处理结果
if cur.right: # 右
count -= cur.right.val
if self.traversal(cur.right, count): # 递归,处理节点
return True
count += cur.right.val # 回溯,撤销处理结果
return False
def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
if root is None:
return False
return self.traversal(root, targetSum - root.val)
113. 路径总和ii
给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。
说明: 叶子节点是指没有子节点的节点。
示例: 给定如下二叉树,以及目标和 sum = 22,
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
result = []
self.traversal(root, targetSum, [], result)
return result
def traversal(self,node, count, path, result):
if not node:
return
path.append(node.val)
count -= node.val
if not node.left and not node.right and count == 0:
result.append(list(path))
self.traversal(node.left, count, path, result)
self.traversal(node.right, count, path, result)
path.pop()
106.从中序与后序遍历序列构造二叉树
根据一棵树的中序遍历与后序遍历构造二叉树。
注意: 你可以假设树中没有重复的元素。
例如,给出
- 中序遍历 inorder = [9,3,15,20,7]
- 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:
首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。
如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。
流程如图:
python
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
# 第一步: 特殊情况讨论: 树为空. (递归终止条件)
if not postorder:
return None
# 第二步: 后序遍历的最后一个就是当前的中间节点.
root_val = postorder[-1]
root = TreeNode(root_val)
# 第三步: 找切割点.
separator_idx = inorder.index(root_val)
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
inorder_left = inorder[:separator_idx]
inorder_right = inorder[separator_idx + 1:]
# 第五步: 切割postorder数组. 得到postorder数组的左,右半边.
# ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.
postorder_left = postorder[:len(inorder_left)]
postorder_right = postorder[len(inorder_left): len(postorder) - 1]
# 第六步: 递归
root.left = self.buildTree(inorder_left, postorder_left)
root.right = self.buildTree(inorder_right, postorder_right)
# 第七步: 返回答案
return root
105.从前序与中序遍历序列构造二叉树
根据一棵树的前序遍历与中序遍历构造二叉树。
注意: 你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:
python
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
# 第一步: 特殊情况讨论: 树为空. 或者说是递归终止条件
if not preorder:
return None
# 第二步: 前序遍历的第一个就是当前的中间节点.
root_val = preorder[0]
root = TreeNode(root_val)
# 第三步: 找切割点.
separator_idx = inorder.index(root_val)
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
inorder_left = inorder[:separator_idx]
inorder_right = inorder[separator_idx + 1:]
# 第五步: 切割preorder数组. 得到preorder数组的左,右半边.
# ⭐️ 重点1: 中序数组大小一定跟前序数组大小是相同的.
preorder_left = preorder[1:1 + len(inorder_left)]
preorder_right = preorder[1 + len(inorder_left):]
# 第六步: 递归
root.left = self.buildTree(preorder_left, inorder_left)
root.right = self.buildTree(preorder_right, inorder_right)
# 第七步: 返回答案
return root
654.最大二叉树
给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
示例 :
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
#if not nums:
#return None
if len(nums)==1:
return TreeNode(nums[0])
max_value=max(nums)
max_idx=nums.index(max_value)
node=TreeNode(max_value)
if max_idx>0:
node.left=self.constructMaximumBinaryTree(nums[:max_idx])
if max_idx<len(nums)-1:
node.right=self.constructMaximumBinaryTree(nums[max_idx+1:])
return node
617.合并二叉树
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
示例 1:
注意: 合并必须从两个树的根节点开始。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
# 递归终止条件:
# 但凡有一个节点为空, 就立刻返回另外一个. 如果另外一个也为None就直接返回None.
if not root1:
return root2
if not root2:
return root1
# 上面的递归终止条件保证了代码执行到这里root1, root2都非空.
root1.val+=root2.val #中
root1.left=self.mergeTrees(root1.left,root2.left)# 左
root1.right=self.mergeTrees(root1.right,root2.right) # 右
return root1
# ⚠️ 注意: 本题我们重复使用了题目给出的节点而不是创建新节点. 节省时间, 空间.
700.二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
例如,
在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。
python
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
# 为什么要有返回值:
# 因为搜索到目标节点就要立即return,
# 这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。
if not root:
return None
if root.val==val:
return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
98.验证二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
ans=[]
self.traversal(root,ans)
for i in range(1,len(ans)):
if ans[i]<=ans[i-1]:
return False
return True
def traversal(self,node,ans):
if not node:return
self.traversal(node.left,ans)
ans.append(node.val)
self.traversal(node.right,ans)
树的最小绝对差
给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。
示例:
提示:树中至少有 2 个节点。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
ans=[]
self.traversal(root,ans)
if len(ans)<2:
return 0
result=float('inf')
for i in range(1,len(ans)):
result=min(result,ans[i]-ans[i-1])
return result
def traversal(self,node,ans):
if not node:return
self.traversal(node.left,ans)
ans.append(node.val)
self.traversal(node.right,ans)
501.二叉搜索树中的众数
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:
- 结点左子树中所含结点的值小于等于当前结点的值
- 结点右子树中所含结点的值大于等于当前结点的值
- 左子树和右子树都是二叉搜索树
例如:
给定 BST [1,null,2,2],
返回[2].
提示:如果众数超过1个,不需考虑输出顺序
进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import defaultdict
class Solution:
def search(self,cur,freq_dict):
if cur is None:
return
freq_dict[cur.val]+=1
self.search(cur.left,freq_dict)
self.search(cur.right,freq_dict)
def findMode(self, root: Optional[TreeNode]) -> List[int]:
freq_dict=defaultdict(int)
ans=[]
self.search(root,freq_dict)
mode=max(freq_dict.values())
for key,value in freq_dict.items():
if value==mode:
ans.append(key)
return ans
236. 二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。"
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉树中。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return None
if p==root or q==root:
return root
left=self.lowestCommonAncestor(root.left,p,q)
right=self.lowestCommonAncestor(root.right,p,q)
if left and right:
return root
if left==None and right!=None:
return right
elif left!=None and right==None:
return left
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。"
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
- 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
- 输出: 6
- 解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
- 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
- 输出: 2
- 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def traversal(self,cur,p,q):
if not cur:
return None
if cur.val>p.val and cur.val>q.val:
left=self.traversal(cur.left,p,q)
if left:
return left
elif cur.val<p.val and cur.val<q.val:
right=self.traversal(cur.right,p,q)
if right:
return right
else:
return cur
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
return self.traversal(root,p,q)
701.二叉搜索树中的插入操作
给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。
提示:
- 给定的树上的节点数介于 0 和 10^4 之间
- 每个节点都有一个唯一整数值,取值范围从 0 到 10^8
- -10^8 <= val <= 10^8
- 新值和原始二叉搜索树中的任意节点值都不同
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def insertIntoBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if root == None:
node=TreeNode(val)
return node
if root.val>val:
root.left=self.insertIntoBST(root.left,val)
if root.val<val:
root.right=self.insertIntoBST(root.right,val)
return root
'''递归过程如下:
如果 root 是空,则新建树节点作为根节点返回即可。
否则比较 root.val 与目标值的大小关系:
如果 root.val 大于目标值,说明目标值应当插入 root 的左子树中,问题变为了在 root.left 中插入目标值,递归调用当前函数;
如果 root.val 小于目标值,说明目标值应当插入 root 的右子树中,问题变为了在 root.right 中插入目标值,递归调用当前函数。'''
450.删除二叉搜索树中的节点
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 <math xmlns="http://www.w3.org/1998/Math/MathML"> O ( h ) O(h) </math>O(h),h 为树的高度。
示例:
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
if root is None:
return None
if root.val==key:
if root.left is None and root.right is None:
return None
elif root.left is not None and root.right is None:
return root.left
elif root.left is None and root.right is not None:
return root.right
else:
cur=root.right
while cur.left is not None:
cur=cur.left
cur.left=root.left
return root.right
if root.val>key:
root.left=self.deleteNode(root.left,key)
if root.val<key:
root.right=self.deleteNode(root.right,key)
return root
'''第一种情况:没找到删除的节点,遍历到空节点直接返回了
找到删除的节点
第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。'''
669. 修剪二叉搜索树
给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if root is None:
return None
if root.val<low:
return self.trimBST(root.right,low,high)
# 寻找符合区间 [low, high] 的节点
if root.val>high:
return self.trimBST(root.left,low,high)
root.left=self.trimBST(root.left,low,high)
root.right=self.trimBST(root.right,low,high)
return root
108.将有序数组转换为二叉搜索树
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def traversal(self,nums,left,right):
if left>right:
return None
mid=left+(right-left)//2
root=TreeNode(nums[mid])
root.left=self.traversal(nums,left,mid-1)
root.right=self.traversal(nums,mid+1,right)
return root
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
return self.traversal(nums,0,len(nums)-1)
538.把二叉搜索树转换为累加树
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。
示例 1:
- 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
- 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
示例 2:
- 输入:root = [0,null,1]
- 输出:[1,null,1]
示例 3:
- 输入:root = [1,0,2]
- 输出:[3,3,2]
示例 4:
- 输入:root = [3,2,4,1]
- 输出:[7,9,4,10]
提示:
- 树中的节点数介于 0 和 104 之间。
- 每个节点的值介于 -104 和 104 之间。
- 树中的所有值 互不相同 。
- 给定的树为二叉搜索树。
python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def traversal(self,cur):
if not cur:
return
self.traversal(cur.right)
cur.val+=self.pre
self.pre=cur.val
self.traversal(cur.left)
def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
self.pre=0 # 记录前一个节点的数值
self.traversal(root)
return root