2025年CNN与Transformer融合的创新点思路

CNN+Transformer这类结构其实一直都挺火的,核心在于他们的互补性。因为在一些复杂的AI应用中,单个模型很难同时高效处理多种类型的数据。如果结合CNN在图像处理上的强大能力和Transformer在序列数据处理上的优势,就可以增加模型处理的灵活性,提高计算效率。

这种结构也是非常热门的毕业or小论文选择,刚刚过去的2024年就有相当多顶会顶刊成果,感兴趣的同学们抓紧。目前CNN+Transformer比较常见的创新就是架构设计创新、注意力机制优化、特征融合策略改进、预训练与微调策略创新、特定领域应用...

本文根据这些方向提供15个最新的CNN+Transformer创新点参考,基本都有代码可复现,帮大家节省了查找的时间,有论文需求的同学可无偿获取,希望大家科研顺利哦!

全部论文+开源代码需要的同学看文末

LEFormer: A hybrid CNN-transformer architecture for accurate lake extraction from remote sensing imagery

**方法:**论文提出了一种结合卷积神经网络(CNN)和Transformer的混合架构,用于从遥感图像中准确提取湖泊。SCTNet通过在训练阶段使用transformer语义信息来提高实时语义分割性能,解决了传统双分支方法中计算开销高和推理速度慢的问题,实现了新一代的状态SOTA结果。

创新点:

  • SCTNet 引入了一种创新的单分支架构,能够在不增加推理计算成本的情况下提取高质量的长程语境信息。

  • 提出了 CF-Block 和语义信息对齐模块,帮助 SCTNet 在训练过程中从 transformer 分支捕获丰富的语义信息。

  • 通过将 GFA 中的矩阵乘法替换为逐像素卷积操作,保留了特征图的空间结构,同时降低了推理延迟。

TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Classification from Diffusion MRI Tractography

**方法:**论文提出了一种名为TractGraphFormer的混合模型,将Graph CNN与Transformer结合,通过整合局部解剖信息和全局特征依赖性提升基于扩散MRI纤维束成像的性别预测性能,通过改进网络结构和实验验证,显著提升了分类性能。

创新点:

  • TractGraphFormer框架结合了Graph CNN和Transformer架构,首次在扩散MRI束流追踪中同时捕获局部解剖关系和全局特征依赖。

  • 提出了一个注意力模块,以解释性别预测任务中的预测性束流。

  • 引入了一个新的组合图,综合考虑了白质(WM)和灰质(GM)信息。

WiTUnet: A U-shaped architecture integrating CNN and Transformer for improved feature alignment and local information fusion

**方法:**论文提出了一个结合卷积神经网络和Transformer的新型网络架构WiTUnet,用于低剂量计算机断层扫描图像的去噪。WiTUnet通过嵌套密集的跳跃路径和窗口化的Transformer结构,改善特征对齐和局部信息融合,显著提升了LDCT图像的去噪效果和图像质量。

创新点:

  • WiTUnet通过引入窗口注意力机制和LiPe模块,实现了在保持低计算开销的同时,显著提升去噪性能。

  • 通过使用局部增强窗口(LeWin)Transformer模块,WiTUnet有效减少了高分辨率特征图中的计算需求,同时在U-net架构中成功应用,提升了图像重建的效果。

  • WiTUnet通过调整特征通道数量(C值),找到了计算效率与去噪效果之间的最佳平衡。

CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer

**方法:**论文提出了一种名为CST-YOLO的模型,它是基于YOLOv7架构,并通过引入CNN-Swin Transformer模块来增强模型的特征提取能力。此外,还引入了三个其他有用的模块:加权高效层聚合网络(W-ELAN)、多尺度通道分割(MCS)和连接卷积层(CatConv),以提高小目标检测的精度。

创新点:

  • 引入了一种新的小目标检测模型CST-YOLO,通过结合YOLOv7架构和Swin Transformer,首次实现了Transformer与YOLOv7的融合。

  • 引入了加权高效层聚合网络(W-ELAN)、多尺度通道分割(MCS)和拼接卷积层(CatConv)等模块。

关注下方《学姐带你玩AI》🚀🚀🚀

回复"卷结合思路"获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

相关推荐
aneasystone本尊11 分钟前
学习 Coze Studio 的知识库入库逻辑
人工智能
然我12 分钟前
从 “只会聊天” 到 “能办实事”:OpenAI Function Call 彻底重构 AI 交互逻辑(附完整接入指南)
前端·javascript·人工智能
岁月宁静19 分钟前
软件开发核心流程全景解析 —— 基于 AI 多模态项目实践
前端·人工智能·后端
wangjiaocheng20 分钟前
软件功能分解输入处理输出递归嵌套模型
人工智能
G等你下课20 分钟前
Function call
前端·人工智能
岁月宁静21 分钟前
MCP 协议应用场景 —— Cursor 连接 Master Go AI
前端·vue.js·人工智能
柠檬味拥抱24 分钟前
融合NLU与NLG的AI Agent语言交互机制研究
人工智能
wydaicls27 分钟前
用函数实现方程函数解题
人工智能·算法·机器学习
努力当一个优秀的程序员34 分钟前
3.逻辑回归:从分类到正则化
人工智能·机器学习
小沈熬夜秃头中୧⍤⃝1 小时前
IOPaint 远程修图:cpolar 内网穿透服务实现跨设备图片编辑
人工智能