神经网络基础-正则化方法

文章目录

    • [1. 什么是正则化](#1. 什么是正则化)
    • [2. 正则化方法](#2. 正则化方法)
      • [2.1 Dropout正则化](#2.1 Dropout正则化)
      • [2.2 批量归一化(BN层)](#2.2 批量归一化(BN层))

学习目标:

  1. 知道正则化的作用
  2. 掌握随机失活 DropOut 策略
  3. 知道 BN 层的作用

1. 什么是正则化

  • 在设计机器学习算法时希望在新样本上的泛化能力强。许多机器学习算法都采用相关的策略来减小测试误差,这些策略被统称为正则化
  • 神经网络的强大的表示能力经常遇到过拟合,所以需要使用不同形式的正则化策略。
  • 目前在深度学习中使用较多的策略有范数惩罚DropOut特殊的网络层等,接下来我们对其进行详细的介绍。

2. 正则化方法

2.1 Dropout正则化

在练神经网络中模型参数较多,在数据量不足的情况下,很容易过拟合。Dropout(随机失活)是一个简单有效的正则化方法。

  • 在训练过程中,Dropout 的实现是让神经元以超参数 p 的概率停止工作或者激活被置为0,未被置为0的进行缩放,缩放比例为1/(1-p)。训练过程可以认为是对完整的神经网络的一些子集进行训练,每次基于输入数据只更新子网络的参数。
  • 在测试过程中,随机失活不起作用。

python实现:

python 复制代码
import torch
import torch.nn as nn


# Dropout 正则化
def test():
    # 初始化随机失活层
    dropout = nn.Dropout(p=0.4)
    # 初始化输入数据:表示某一层的 weight 值
    inputs = torch.randint(0,10,size=[1,4]).float()
    layer = nn.Linear(4,5)
    y = layer(inputs)
    print("未失活FC层的输出结果\n",y)
    y = dropout(y)
    print("失活后FC层的输出结果\n",y)

test()

输出结果:

tex 复制代码
未失活FC层的输出结果
 tensor([[-2.2610, -0.7930,  0.3200,  7.0264, -2.2781]],
       grad_fn=<AddmmBackward0>)
失活后FC层的输出结果
 tensor([[-0.0000, -1.3217,  0.0000,  0.0000, -3.7968]], grad_fn=<MulBackward0>)

上述代码将 Dropout 层的概率 p 设置为 0.4,此时经过 Dropout 层计算的张量中就出现了很多 0 , 未变为0的按照(1/(1-0.4))进行处理。

2.2 批量归一化(BN层)

先对数据标准化,再对数据重构(缩放+平移),如下所示:

  1. λ 和 β 是可学习的参数,它相当于对标准化后的值做了一个线性变换,λ 为系数,β 为偏置;
  2. eps 通常指为 1e-5,避免分母为 0;
  3. E(x) 表示变量的均值;
  4. Var(x) 表示变量的方差;

批量归一化层在计算机视觉领域使用较多,具体使用方法我们到后面在给大家进行介绍。

相关推荐
机器之心20 分钟前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.1 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus1 小时前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师2 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子2 小时前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger2 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼2 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339863 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室4 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘