强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!

目录

效果一览



基本介绍

1.Transformer-LSTM+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)

Transformer-LSTM模型的架构:输入层:多个变量作为输入,形成一个多维输入张量。Transformer编码器:该编码器由多个Transformer编码器层组成,每个编码器层包含多头注意力机制和前馈网络。编码器层用于学习变量之间的关系。LSTM层:在Transformer编码器之后,将输出序列输入到LSTM层中。LSTM层用于处理序列,记忆先前的状态,并生成隐藏状态序列。输出层:将LSTM层的隐藏状态序列输入到输出层,通过全连接层进行最终的预测。输出层的神经元个数通常与预测目标的维度相匹配。训练过程中,可以使用已知的输入序列和目标序列来计算预测误差,并使用反向传播算法来更新模型的参数。优化器可以使用常见的梯度下降方法,如Adam。

多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。

2.先通过Transformer-LSTM封装因变量(y1 y2 y3 )与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。

3.data为数据集,5个输入特征,3个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3)的自变量x1,x2,x3,x4,x5。

4.main1.m为Transformer-LSTM主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。

5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。

6.适合工艺参数优化、工程设计优化等最优特征组合领域。

NSGA-II算法的基本思想与技术路线

1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt;

2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1;

3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种群Rt, 重复以上操作, 直到满足程序结束的条件。

数据集

程序设计

  • 完整程序和数据获取方式:私信博主回复强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!(Matlab)
matlab 复制代码
%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义结果存放模板
empty.position = [];        %输入变量存放
empty.cost = [];            %目标函数存放
empty.rank = [];            % 非支配排序等级
empty.domination = [];      %支配个体集合
empty.dominated = 0;        %支配个体数目
empty.crowdingdistance = [];%个体聚集距离
pop = repmat(empty, npop, 1);
%% 1、初始化种群
for i = 1 : npop
    pop(i).position = create_x(var);   %产生输入变量(个体)
    pop(i).cost = costfunction(pop(i).position);%计算目标函数
end
%% 2、构造非支配集
[pop,F] = nondominatedsort(pop);
%% 计算聚集距离
pop = calcrowdingdistance(pop,F);
%% 主程序(选择、交叉、变异)

参考资料

工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化陪您跨年!RBF神经网络+NSGAII多目标优化算法(Matlab)
工艺参数优化、工程设计优化来袭!BP神经网络+NSGAII多目标优化算法(Matlab)

北大核心工艺参数优化!SAO-BP雪融算法优化BP神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化上新!Elman循环神经网络+NSGAII多目标优化算法(Matlab)

相关推荐
青云交3 小时前
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用
flink·lstm·设备状态监测·故障预测·实时流处理·java 大数据·能源行业
居7然7 小时前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
tt55555555555510 小时前
Transformer原理与过程详解
网络·深度学习·transformer
盼小辉丶15 小时前
视觉Transformer实战——Vision Transformer(ViT)详解与实现
人工智能·深度学习·transformer
IT古董1 天前
【第七章:时间序列模型】2.时间序列统计模型与神经网络模型-(3)神经网络预测时间序列模型: 从RNN,LSTM到nbeats模型
rnn·神经网络·lstm
L.EscaRC2 天前
【AI基础篇】Transformer架构深度解析与前沿应用
人工智能·深度学习·transformer
机器学习之心2 天前
TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测Matlab实现
cnn·gru·transformer
高洁012 天前
大模型-详解 Vision Transformer (ViT)
人工智能·python·深度学习·算法·transformer
xier_ran2 天前
Transformer:Decoder 中,Cross-Attention 所用的 K(Key)和 V(Value)矩阵,是如何从 Encoder 得到的
深度学习·矩阵·transformer
2401_841495642 天前
【自然语言处理】轻量版生成式语言模型GPT
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer