力扣 完全平方数

动态规划,找到前几个状态做更新。

题目

从题可看出又是一道dp,只要找到一个最大的平方数,然后往回退到上个状态,然后再用回退的状态加回去这个平方数即加上这一种。注意这里的所含平方数并不是随着数字变大而变大的,因此还要加多一层循环做遍历的维护,目的是找到的平方数少。

java 复制代码
class Solution {
    public int numSquares(int n) {
        int[] f = new int[n + 1];
        for (int i = 1; i <= n; i++) {
             f[i] = Integer.MAX_VALUE;
            for (int j = 1; j * j <= i; j++) {
                f[i] = Math.min(f[i], f[i - j * j]+1);//通过减去一个平方数对前面已经遍历的f[i]进行筛选
            }
        }
        return f[n];
    }
}

这里对f[i]做了频繁更新,实际只需要在后面更新一次即可,在做比较时可以用一个临时变量去存,这样就可以优化一下维护状态的数组了。

java 复制代码
class Solution {
    public int numSquares(int n) {
        int[] f = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            int minn = Integer.MAX_VALUE;
            for (int j = 1; j * j <= i; j++) {
                minn = Math.min(minn, f[i - j * j]);//通过减去一个平方数对前面已经遍历的f[i]进行筛选
            }
            f[i] = minn + 1;//更新当前数时加回去j*j这种情况
        }
        return f[n];
    }
}

然后也可以换一下内外层循环,先去生成所有完全平方数,然后做更新。

时间复杂度:O(n√n),空间复杂度:O(n)。

java 复制代码
class Solution {
    public int numSquares(int n) {
       
        int[] f = new int[n + 1]; 
        Arrays.fill(f, Integer.MAX_VALUE); 
        f[0] = 0;
        
        for (int i = 1; i * i <= n; i++) {
            for (int j = i * i; j <= n; j++) {

                f[j] = Math.min(f[j], f[j - i * i] + 1);
            }
        }
        
        return f[n];
    }
}

在做dp时,学会找到状态间的关系,也要注意维护状态的数组优化。

相关推荐
短剑重铸之日12 分钟前
《SpringBoot4.0初识》第一篇:前瞻与思想
java·开发语言·后端·spring·springboot4.0
千金裘换酒14 分钟前
LeetCode反转链表
算法·leetcode·链表
蓝色王者33 分钟前
springboot 2.6.13 整合flowable6.8.1
java·spring boot·后端
Tao____41 分钟前
基于Ruoyi开发的IOT物联网平台
java·网络·物联网·mqtt·网络协议
byzh_rc1 小时前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
花哥码天下1 小时前
apifox登录后设置token到环境变量
java·后端
qq_433554541 小时前
C++ manacher(求解回文串问题)
开发语言·c++·算法
歌_顿2 小时前
知识蒸馏学习总结
人工智能·算法
浩瀚地学2 小时前
【Java】常用API(二)
java·开发语言·经验分享·笔记·学习