CBAM-2018学习笔记

名称:

Convolutional Block Attention Module (CBAM)

来源:

CBAM: Convolutional Block Attention Module

相关工作:

#ResNet #GoogleNet #ResNeXt #Network-engineering #Attention-mechanism

创新点:

贡献:

  • 提出CBAM
  • 验证了其有效性
  • 改善提高了以往模型的性能

代码:

python 复制代码
  
import torch  
from torch import nn  
  
  
class ChannelAttention(nn.Module):  
    def __init__(self, in_planes, ratio=16):  
        super(ChannelAttention, self).__init__()  
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  
        self.max_pool = nn.AdaptiveMaxPool2d(1)  
  
        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)  
        self.relu1 = nn.ReLU()  
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)  
        self.sigmoid = nn.Sigmoid()  
  
    def forward(self, x):  
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))  
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))  
        out = avg_out + max_out  
        return self.sigmoid(out)  
  
  
class SpatialAttention(nn.Module):  
    def __init__(self, kernel_size=7):  
        super(SpatialAttention, self).__init__()  
  
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'  
        padding = 3 if kernel_size == 7 else 1  
  
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)  # 7,3     3,1  
        self.sigmoid = nn.Sigmoid()  
  
    def forward(self, x):  
        avg_out = torch.mean(x, dim=1, keepdim=True)  
        max_out, _ = torch.max(x, dim=1, keepdim=True)  
        x = torch.cat([avg_out, max_out], dim=1)  
        x = self.conv1(x)  
        return self.sigmoid(x)  
  
  
class CBAM(nn.Module):  
    def __init__(self, in_planes, ratio=16, kernel_size=7):  
        super(CBAM, self).__init__()  
        self.ca = ChannelAttention(in_planes, ratio)  
        self.sa = SpatialAttention(kernel_size)  
  
    def forward(self, x):  
        out = x * self.ca(x)  
        result = out * self.sa(out)  
        return result  
  
  
# 输入 N C H W,  输出 N C H Wif __name__ == '__main__':  
    block = CBAM(64)  
    input = torch.rand(3, 64, 32, 32)  
    output = block(input)  
    print(input.size(), output.size())
相关推荐
AI绘画哇哒哒29 分钟前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
小奶包他干奶奶4 小时前
Webpack学习——Loader(文件转换器)
前端·学习·webpack
小奶包他干奶奶4 小时前
Webpack学习——原理理解
学习·webpack·devops
励志成为美貌才华为一体的女子5 小时前
强化学习PPO和GRPO逻辑学习
学习
meichaoWen5 小时前
【Vue3】vue3的全面学习(一)
前端·javascript·学习
FFF团团员9095 小时前
树莓派学习笔记3:LED和Button
笔记·学习
碧海潮生_CC6 小时前
【CUDA笔记】04 CUDA 归约, 原子操作,Warp 交换
笔记·cuda
摇滚侠7 小时前
2025最新 SpringCloud 教程,从单体到集群架构,笔记02
笔记·spring cloud·架构
风123456789~7 小时前
【OceanBase专栏】OB背景知识
数据库·笔记·oceanbase
智者知已应修善业9 小时前
【51单片机普通延时奇偶灯切换】2023-4-4
c语言·经验分享·笔记·嵌入式硬件·51单片机