Tensor 基本操作1 | PyTorch 深度学习实战

目录

创建 Tensor

使用 Torch 接口创建 Tensor

复制代码
import torch

参考:https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

常用操作

unsqueeze

将多维数组解套,并嵌入新的一层维度。

复制代码
    data = [[1, 2],[3, 4]]
    x_data = torch.tensor(data)
    print("x_data")
    print(x_data)

    x2_data = x_data.unsqueeze(-1)
    print("x_data>> unsqueeze -1")
    print(x2_data)

    x2_data = x_data.unsqueeze(0)
    print("x_data>> unsqueeze 0")
    print(x2_data)

    x2_data = x_data.unsqueeze(1)
    print("x_data>> unsqueeze 1")
    print(x2_data)

    x2_data = x_data.unsqueeze(2)
    print("x_data>> unsqueeze 2")
    print(x2_data)

结果:

复制代码
x_data
tensor([[1, 2],
        [3, 4]])
x_data>> unsqueeze -1   # -1 代表最内层,将最内层的数用一个新的维度包起来
tensor([[[1],
         [2]],

        [[3],
         [4]]])
x_data>> unsqueeze 0 # 0 代表最外层,将原来的多维数组整个多套一层
tensor([[[1, 2],
         [3, 4]]])
x_data>> unsqueeze 1 # 代表原来第一维里的每个元素,套一层
tensor([[[1, 2]],

        [[3, 4]]])
x_data>> unsqueeze 2 # 代表原来第二维里的每个元素,套一层
tensor([[[1],        # 当前一共两维,所以效果和 -1 一样
         [2]],

        [[3],
         [4]]])

squeeze

去掉指定或全部的维度中只有一个元素的多维数组。

比如输入为 Ax1xBxCx1xD 维的数组,输出变成了 AxBxCxD 维的数组。

https://pytorch.org/docs/stable/generated/torch.squeeze.html

复制代码
    data = [[1], [2],[3], [4]]
    x_data = torch.tensor(data)
    print("x_data")
    print(x_data)

    x2_data = x_data.squeeze()
    print("x_data>> squeeze")
    print(x2_data)

    x2_data = x_data.squeeze(1)
    print("x_data>> squeeze 1")
    print(x2_data)

结果:

复制代码
x_data
tensor([[1],
        [2],
        [3],
        [4]])
x_data>> squeeze
tensor([1, 2, 3, 4])
x_data>> squeeze 1
tensor([1, 2, 3, 4])

Softmax

https://pytorch.org/docs/stable/generated/torch.softmax.html

归一化操作。

代码1
复制代码
    data = torch.tensor([1,2,3], dtype=torch.float) # 维度 3; 注意,此处 dtype 是 int 或 long 接口报错
    x_data = torch.softmax(data, 0)
    print("x_data")
    print(x_data)

结果:

复制代码
x_data
tensor([0.0900, 0.2447, 0.6652])  # 维度 3
代码2
复制代码
    data = torch.tensor([[1],[2],[3]], dtype=torch.float) # 维度 3x1
    x_data2 = torch.softmax(data, 0)
    print("x_data2")
    print(x_data2)

结果:

复制代码
x_data2  # 维度 3x1
tensor([[0.0900],
        [0.2447],
        [0.6652]])
代码3
复制代码
    data = torch.tensor([[1],[2],[3]], dtype=torch.float) # 维度 3x1
    x_data2 = torch.softmax(data, 1) # 沿着第一维求
    print("x_data2")
    print(x_data2)

结果:

复制代码
x_data2
tensor([[1.],
        [1.],
        [1.]])

此时,每维都是 1 个元素,针对自身求 softmax,所以,结果是 1.

argmax

https://pytorch.org/docs/stable/generated/torch.argmax.html

返回一个多维数组的最大值的索引,如果是多维数组,则返回第一维的索引。

item

https://pytorch.org/docs/stable/generated/torch.Tensor.item.html

返回一个 Tensor 中携带的 Python Number 对象。该接口只对 Tensor 是一维的有效。

复制代码
x = torch.tensor([1.0])
x.item()
相关推荐
誉鏐4 分钟前
PyTorch复现线性模型
人工智能·pytorch·python
我要昵称干什么5 分钟前
基于S函数的simulink仿真
人工智能·算法
向上的车轮7 分钟前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ30 分钟前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
Ai尚研修-贾莲31 分钟前
基于DeepSeek、ChatGPT支持下的地质灾害风险评估、易发性分析、信息化建库及灾后重建
人工智能·chatgpt
SelectDB技术团队1 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
weixin_435208161 小时前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
大数据在线1 小时前
AI重塑云基础设施,亚马逊云科技打造AI定制版IaaS“样板房”
人工智能·云基础设施·ai大模型·亚马逊云科技
hello_ejb31 小时前
聊聊Spring AI的RetrievalAugmentationAdvisor
人工智能·spring·restful
你觉得2051 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint