UMAP(Uniform Manifold Approximation and Projection)算法

UMAP算法概述

UMAP(Uniform Manifold Approximation and Projection)是一种非线性降维技术,主要用于数据可视化和异常检测。它通过构建数据的拓扑图并优化低维表示,能够在保留数据结构和相对距离的同时,将高维数据映射到低维空间。

UMAP算法的工作原理

UMAP的核心原理是基于拓扑数据分析和流形学习。它使用图论和优化方法来构建数据的低维表示。具体步骤包括:

确定数据的邻近关系:UMAP首先计算数据点之间的邻近关系,可以使用k最近邻算法或基于距离的方法。

构建数据的拓扑图:UMAP使用邻近关系构建数据的拓扑图,其中数据点表示为节点,边表示数据点之间的连接关系。

优化低维表示:UMAP使用随机梯度下降方法优化数据的低维表示,旨在最小化高维空间和低维空间中数据点之间的拓扑差异2。

UMAP算法的应用场景

UMAP在多个领域有着广泛的应用,包括但不限于:

数据可视化:UMAP能够将高维数据映射到低维空间,生成易于理解的图形表示。

异常检测:通过识别数据流形中的异常点,UMAP有助于提高异常检测的准确性。

特征选择:UMAP可以帮助识别和选择最重要的特征,简化模型并提高性能。

代码

python 复制代码
# !pip install umap-learn

import umap
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载示例数据集(手写数字数据集)
digits = load_digits()
data = digits.data
labels = digits.target

# 使用UMAP进行降维
# n_neighbors: 控制局部结构的邻近点数量
# n_components: 降维后的维度(通常为2或3)
# metric: 距离度量方式(默认欧氏距离)
reducer = umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(data)

# 可视化降维结果
plt.figure(figsize=(10, 8))
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap='Spectral', s=5)
plt.colorbar(boundaries=range(11)).set_ticks(range(10))
plt.title('UMAP Projection of the Digits Dataset', fontsize=14)
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.show()

运行结果

相关推荐
程序员小远3 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~4 小时前
python多进程和多线程问题
开发语言·python
星云数灵4 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
计算机毕设匠心工作室4 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥4 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
程序员东岸5 小时前
《数据结构——排序(中)》选择与交换的艺术:从直接选择到堆排序的性能跃迁
数据结构·笔记·算法·leetcode·排序算法
程序员-King.5 小时前
day104—对向双指针—接雨水(LeetCode-42)
算法·贪心算法
神仙别闹5 小时前
基于C++实现(控制台)应用递推法完成经典型算法的应用
开发语言·c++·算法
Ayanami_Reii5 小时前
进阶数据结构应用-一个简单的整数问题2(线段树解法)
数据结构·算法·线段树·延迟标记
listhi5206 小时前
基于改进SET的时频分析MATLAB实现
开发语言·算法·matlab