UMAP(Uniform Manifold Approximation and Projection)算法

UMAP算法概述

UMAP(Uniform Manifold Approximation and Projection)是一种非线性降维技术,主要用于数据可视化和异常检测。它通过构建数据的拓扑图并优化低维表示,能够在保留数据结构和相对距离的同时,将高维数据映射到低维空间。

UMAP算法的工作原理

UMAP的核心原理是基于拓扑数据分析和流形学习。它使用图论和优化方法来构建数据的低维表示。具体步骤包括:

确定数据的邻近关系:UMAP首先计算数据点之间的邻近关系,可以使用k最近邻算法或基于距离的方法。

构建数据的拓扑图:UMAP使用邻近关系构建数据的拓扑图,其中数据点表示为节点,边表示数据点之间的连接关系。

优化低维表示:UMAP使用随机梯度下降方法优化数据的低维表示,旨在最小化高维空间和低维空间中数据点之间的拓扑差异2。

UMAP算法的应用场景

UMAP在多个领域有着广泛的应用,包括但不限于:

数据可视化:UMAP能够将高维数据映射到低维空间,生成易于理解的图形表示。

异常检测:通过识别数据流形中的异常点,UMAP有助于提高异常检测的准确性。

特征选择:UMAP可以帮助识别和选择最重要的特征,简化模型并提高性能。

代码

python 复制代码
# !pip install umap-learn

import umap
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载示例数据集(手写数字数据集)
digits = load_digits()
data = digits.data
labels = digits.target

# 使用UMAP进行降维
# n_neighbors: 控制局部结构的邻近点数量
# n_components: 降维后的维度(通常为2或3)
# metric: 距离度量方式(默认欧氏距离)
reducer = umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(data)

# 可视化降维结果
plt.figure(figsize=(10, 8))
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap='Spectral', s=5)
plt.colorbar(boundaries=range(11)).set_ticks(range(10))
plt.title('UMAP Projection of the Digits Dataset', fontsize=14)
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.show()

运行结果

相关推荐
guygg886 分钟前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
老鼠只爱大米12 分钟前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列
七牛云行业应用26 分钟前
重构实录:我删了 5 家大模型 SDK,只留了 OpenAI 标准库
python·系统架构·大模型·aigc·deepseek
知乎的哥廷根数学学派32 分钟前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mit6.8241 小时前
序列化|质数筛|tips|回文dp
算法
rgeshfgreh1 小时前
C++字符串处理:STL string终极指南
java·jvm·算法
一人の梅雨1 小时前
亚马逊SP-API商品详情接口轻量化实战:合规与商业价值提取指南
python
Protein_zmm1 小时前
【算法基础】二分
算法
Lips6112 小时前
2026.1.11力扣刷题笔记
笔记·算法·leetcode
charlie1145141912 小时前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy