UMAP(Uniform Manifold Approximation and Projection)算法

UMAP算法概述

UMAP(Uniform Manifold Approximation and Projection)是一种非线性降维技术,主要用于数据可视化和异常检测。它通过构建数据的拓扑图并优化低维表示,能够在保留数据结构和相对距离的同时,将高维数据映射到低维空间。

UMAP算法的工作原理

UMAP的核心原理是基于拓扑数据分析和流形学习。它使用图论和优化方法来构建数据的低维表示。具体步骤包括:

确定数据的邻近关系:UMAP首先计算数据点之间的邻近关系,可以使用k最近邻算法或基于距离的方法。

构建数据的拓扑图:UMAP使用邻近关系构建数据的拓扑图,其中数据点表示为节点,边表示数据点之间的连接关系。

优化低维表示:UMAP使用随机梯度下降方法优化数据的低维表示,旨在最小化高维空间和低维空间中数据点之间的拓扑差异2。

UMAP算法的应用场景

UMAP在多个领域有着广泛的应用,包括但不限于:

数据可视化:UMAP能够将高维数据映射到低维空间,生成易于理解的图形表示。

异常检测:通过识别数据流形中的异常点,UMAP有助于提高异常检测的准确性。

特征选择:UMAP可以帮助识别和选择最重要的特征,简化模型并提高性能。

代码

python 复制代码
# !pip install umap-learn

import umap
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载示例数据集(手写数字数据集)
digits = load_digits()
data = digits.data
labels = digits.target

# 使用UMAP进行降维
# n_neighbors: 控制局部结构的邻近点数量
# n_components: 降维后的维度(通常为2或3)
# metric: 距离度量方式(默认欧氏距离)
reducer = umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(data)

# 可视化降维结果
plt.figure(figsize=(10, 8))
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap='Spectral', s=5)
plt.colorbar(boundaries=range(11)).set_ticks(range(10))
plt.title('UMAP Projection of the Digits Dataset', fontsize=14)
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.show()

运行结果

相关推荐
点云SLAM1 小时前
C++ 常见面试题汇总
java·开发语言·c++·算法·面试·内存管理
叙白冲冲1 小时前
哈希算法以及面试答法
算法·面试·哈希算法
java1234_小锋2 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 主成分分析 (PCA)
python·机器学习·scikit-learn
java1234_小锋2 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 线性判别分析 (LDA)
python·机器学习·scikit-learn
YuTaoShao2 小时前
【LeetCode 每日一题】1277. 统计全为 1 的正方形子矩阵
算法·leetcode·矩阵
古译汉书2 小时前
嵌入式铁头山羊stm32-ADC实现定时器触发的注入序列的单通道转换-Day26
开发语言·数据结构·stm32·单片机·嵌入式硬件·算法
野犬寒鸦2 小时前
力扣hot100:相交链表与反转链表详细思路讲解(160,206)
java·数据结构·后端·算法·leetcode
阿昭L2 小时前
leetcode两数之和
算法·leetcode
周树皮不皮2 小时前
【Leetcode100】算法模板之二叉树
算法
思辨共悟3 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析