UMAP(Uniform Manifold Approximation and Projection)算法

UMAP算法概述

UMAP(Uniform Manifold Approximation and Projection)是一种非线性降维技术,主要用于数据可视化和异常检测。它通过构建数据的拓扑图并优化低维表示,能够在保留数据结构和相对距离的同时,将高维数据映射到低维空间。

UMAP算法的工作原理

UMAP的核心原理是基于拓扑数据分析和流形学习。它使用图论和优化方法来构建数据的低维表示。具体步骤包括:

确定数据的邻近关系:UMAP首先计算数据点之间的邻近关系,可以使用k最近邻算法或基于距离的方法。

构建数据的拓扑图:UMAP使用邻近关系构建数据的拓扑图,其中数据点表示为节点,边表示数据点之间的连接关系。

优化低维表示:UMAP使用随机梯度下降方法优化数据的低维表示,旨在最小化高维空间和低维空间中数据点之间的拓扑差异2。

UMAP算法的应用场景

UMAP在多个领域有着广泛的应用,包括但不限于:

数据可视化:UMAP能够将高维数据映射到低维空间,生成易于理解的图形表示。

异常检测:通过识别数据流形中的异常点,UMAP有助于提高异常检测的准确性。

特征选择:UMAP可以帮助识别和选择最重要的特征,简化模型并提高性能。

代码

python 复制代码
# !pip install umap-learn

import umap
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载示例数据集(手写数字数据集)
digits = load_digits()
data = digits.data
labels = digits.target

# 使用UMAP进行降维
# n_neighbors: 控制局部结构的邻近点数量
# n_components: 降维后的维度(通常为2或3)
# metric: 距离度量方式(默认欧氏距离)
reducer = umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(data)

# 可视化降维结果
plt.figure(figsize=(10, 8))
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap='Spectral', s=5)
plt.colorbar(boundaries=range(11)).set_ticks(range(10))
plt.title('UMAP Projection of the Digits Dataset', fontsize=14)
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.show()

运行结果

相关推荐
IT猿手8 分钟前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Java知识技术分享15 分钟前
使用LangChain构建第一个ReAct Agent
python·react.js·ai·语言模型·langchain
Erik_LinX18 分钟前
算法日记25:01背包(DFS->记忆化搜索->倒叙DP->顺序DP->空间优化)
算法·深度优先
Alidme25 分钟前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
奔跑吧邓邓子26 分钟前
【Python爬虫(44)】分布式爬虫:筑牢安全防线,守护数据之旅
开发语言·分布式·爬虫·python·安全
小王努力学编程26 分钟前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
最遥远的瞬间28 分钟前
15-贪心算法
算法·贪心算法
程序员 小濠1 小时前
接口测试基础 --- 什么是接口测试及其测试流程?
自动化测试·python·测试工具·职场和发展·appium·接口测试·压力测试
程序媛徐师姐1 小时前
Python基于Django的酒店推荐系统【附源码】
python·django·酒店·酒店推荐·python django·酒店推荐系统·python酒店推荐系统
维齐洛波奇特利(male)1 小时前
(动态规划 完全背包 **)leetcode279完全平方数
算法·动态规划