UMAP(Uniform Manifold Approximation and Projection)算法

UMAP算法概述

UMAP(Uniform Manifold Approximation and Projection)是一种非线性降维技术,主要用于数据可视化和异常检测。它通过构建数据的拓扑图并优化低维表示,能够在保留数据结构和相对距离的同时,将高维数据映射到低维空间。

UMAP算法的工作原理

UMAP的核心原理是基于拓扑数据分析和流形学习。它使用图论和优化方法来构建数据的低维表示。具体步骤包括:

确定数据的邻近关系:UMAP首先计算数据点之间的邻近关系,可以使用k最近邻算法或基于距离的方法。

构建数据的拓扑图:UMAP使用邻近关系构建数据的拓扑图,其中数据点表示为节点,边表示数据点之间的连接关系。

优化低维表示:UMAP使用随机梯度下降方法优化数据的低维表示,旨在最小化高维空间和低维空间中数据点之间的拓扑差异2。

UMAP算法的应用场景

UMAP在多个领域有着广泛的应用,包括但不限于:

数据可视化:UMAP能够将高维数据映射到低维空间,生成易于理解的图形表示。

异常检测:通过识别数据流形中的异常点,UMAP有助于提高异常检测的准确性。

特征选择:UMAP可以帮助识别和选择最重要的特征,简化模型并提高性能。

代码

python 复制代码
# !pip install umap-learn

import umap
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 加载示例数据集(手写数字数据集)
digits = load_digits()
data = digits.data
labels = digits.target

# 使用UMAP进行降维
# n_neighbors: 控制局部结构的邻近点数量
# n_components: 降维后的维度(通常为2或3)
# metric: 距离度量方式(默认欧氏距离)
reducer = umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean')
embedding = reducer.fit_transform(data)

# 可视化降维结果
plt.figure(figsize=(10, 8))
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap='Spectral', s=5)
plt.colorbar(boundaries=range(11)).set_ticks(range(10))
plt.title('UMAP Projection of the Digits Dataset', fontsize=14)
plt.xlabel('UMAP Component 1')
plt.ylabel('UMAP Component 2')
plt.show()

运行结果

相关推荐
HAPPY酷6 分钟前
C++ 和 Python 的“容器”对决:从万金油到核武器
开发语言·c++·python
Jay Kay26 分钟前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
Epiphany.55638 分钟前
蓝桥杯备赛题目-----爆破
算法·职场和发展·蓝桥杯
gpfyyds6661 小时前
Python代码练习
开发语言·python
YuTaoShao1 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法三)DP 空间优化
算法·leetcode·职场和发展
茉莉玫瑰花茶1 小时前
C++ 17 详细特性解析(5)
开发语言·c++·算法
cpp_25011 小时前
P10570 [JRKSJ R8] 网球
数据结构·c++·算法·题解
cpp_25011 小时前
P8377 [PFOI Round1] 暴龙的火锅
数据结构·c++·算法·题解·洛谷
uesowys2 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
aiguangyuan2 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp