目录
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
说明
地址:https://modelscope.cn/models/iic/cv_resnet18_card_correction
票证检测矫正模型在实际生活中有着广泛的需求,例如信息抽取、图像质量判断、证件扫描、票据审计等领等场景,可以大幅提高工作效率和准确性。本次 读光团队 开源了商用票证检测矫正模型,基于海量的真实数据训练,可以从容应对多种复杂场景的票证检测矫正任务,该模型具有以下优点:
- 支持任意角度、多卡证票据等混贴场景,同时检测输入图像任意角度的多个子图区域;
- 基于海量真实数据训练,效果满足国内常见的卡证票据的检测矫正需求;
- 支持子图区域复印件判断、四方向判断,准确率高达 99%;
- 矫正效果、推理速度远高于 modelScope 同类模型,详见本文测试报告。
输入图片,基于 Resnet18-FPN 提取特征后,在 1/4 尺寸处通过三条分支分别识别出票证的中心点、偏移量(中心点到4个顶点距离)、中心点偏移量(为了得到精准的中心点),即可解码数出票证区域的四边形框;再用透视变换将票证拉平得到矫正后的票证信息;与此同时,分类分支识别出子图朝向,用于而切割的子图转正。
算法流程
测试时的主要预处理和后处理如下:
- 图像预处理:将输入图片按照比例缩放,长边 Resize 到 768,短边 Pad 到长短边相等,同时有减均值、除方差等归一化操作。
- 模型卡证区域检测:对输入图像中的卡证票据区域进行检测,并对
卡证票据的方向
和复印件类型
进行分类; - 后处理矫正:根据
卡证区域检测框
和卡证票据的方向
对卡证区域进行透视变化,并转为水平方向;
输出字段定义
字段名称 | 说明 |
---|---|
polygons | 框检得到的任意四边形四个顶点,依次为左上、右上、右下、左下 |
scores | 框检置信度,标识检测的可行度,值域 0 到 1 之间 |
labels | 卡证方向分类,枚举类型,0、1、2、3 依次表示卡证顺时针旋转 90度、180度、270度 |
layout | 复印件分类,枚举类型,0 表示非复印件,1 表示复印件 |
output_imgs | 矫正后的子图区域像素值 |
所有字段第一个维度的长度相等且一一对应,为图片中票证的数量。比如polygons[0]、scores[0]、labels[0]、layout[0]、output_imgs[0]表示第一个子图的坐标、置信度、方向、是否复印件、拉平后的子图。
效果
模型信息
Model Properties
Inputs
name:input
tensor:Float[1, 3, 768, 768]
Outputs
name:output
tensor:Float[1, 1, 192, 192]
name:286
tensor:Float[1, 4, 192, 192]
name:289
tensor:Float[1, 2, 192, 192]
name:292
tensor:Float[1, 8, 192, 192]
name:295
tensor:Float[1, 2, 192, 192]
项目
代码
using OpenCvSharp;
using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;
namespace C__OpenCvSharp_DNN_卡证检测矫正
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
Stopwatch stopwatch = new Stopwatch();
Mat image;
string image_path;
string startupPath;
string model_path;
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
const string DllName = "CardCorrectionSharp.dll";
IntPtr engine;
/*
//初始化
extern "C" _declspec(dllexport) int __cdecl init(void** engine, char* model_path, char* msg);
//校准
extern "C" _declspec(dllexport) int __cdecl correction(void* engine, Mat* image, char* msg, int* out_imgs_size, Mat* out_img1, Mat* out_img2, Mat* out_img3);
//释放
extern "C" _declspec(dllexport) void __cdecl destroy(void* engine);
*/
[DllImport(DllName, EntryPoint = "init", CallingConvention = CallingConvention.Cdecl)]
internal extern static int init(ref IntPtr engine, string model_path, StringBuilder msg);
[DllImport(DllName, EntryPoint = "correction", CallingConvention = CallingConvention.Cdecl)]
internal extern static int correction(IntPtr engine, IntPtr image, StringBuilder msg, ref int out_imgs_size, IntPtr out_img1, IntPtr out_img2, IntPtr out_img3);
[DllImport(DllName, EntryPoint = "destroy", CallingConvention = CallingConvention.Cdecl)]
internal extern static int destroy(IntPtr engine);
private void Form1_Load(object sender, EventArgs e)
{
startupPath = Application.StartupPath;
model_path = startupPath + "\\model\\cv_resnet18_card_correction.onnx";
StringBuilder msg = new StringBuilder(512);
int res = init(ref engine, model_path, msg);
if (res == -1)
{
MessageBox.Show(msg.ToString());
return;
}
else
{
Console.WriteLine(msg.ToString());
}
image_path = startupPath + "\\test_img\\1.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = "";
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
destroy(engine);
}
Mat out_img1;
Mat out_img2;
Mat out_img3;
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
Application.DoEvents();
Cv2.DestroyAllWindows();
if (image!=null) image.Dispose();
if (out_img1 != null) out_img1.Dispose();
if (out_img2 != null) out_img2.Dispose();
if (out_img3 != null) out_img3.Dispose();
if (pictureBox1.Image != null) pictureBox1.Image.Dispose();
StringBuilder msg = new StringBuilder(512);
int out_imgs_size = 0;
image = new Mat(image_path);
out_img1 = new Mat();
out_img2 = new Mat();
out_img3 = new Mat();
stopwatch.Restart();
int res = correction(engine, image.CvPtr, msg, ref out_imgs_size, out_img1.CvPtr, out_img2.CvPtr, out_img3.CvPtr);
if (res == 0)
{
stopwatch.Stop();
double costTime = stopwatch.Elapsed.TotalMilliseconds;
if (out_imgs_size >= 1)
{
pictureBox2.Image = new Bitmap(out_img1.ToMemoryStream());
}
if (out_imgs_size >= 2)
{
Cv2.ImShow("2", out_img2);
}
if (out_imgs_size >= 3)
{
Cv2.ImShow("3", out_img3);
}
textBox1.Text = $"耗时:{costTime:F2}ms";
}
else
{
textBox1.Text = "识别失败";
}
button2.Enabled = true;
}
}
}
下载
参考
https://github.com/hpc203/cv_resnet18_card_correction-opencv-dnn