使用ollama本地部署微调后的大语言模型

在使用LlaMA-Factory导出的模型时,由于其输出格式与Ollama所需的格式不一致,需要借助llama.cpp的工具将模型转换为GGUF格式,以便在Ollama中使用。Ollama是一款开源的本地大语言模型推理工具,支持对LLM模型进行管理、训练和推理,并提供了WebUI界面和客户端API。


Ollama安装

1. 安装方式

Ollama支持多种安装方式,包括直接安装和通过Docker安装。

  • 直接安装

    • Windows:从Ollama官网下载安装程序并运行。

    • macOS:使用Homebrew安装:

      bash 复制代码
      brew install ollama
    • Linux:直接下载并安装:

      bash 复制代码
      curl -fsSL https://ollama.com/install.sh | sh

      或者手动下载并解压:

      复制代码
      curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
      sudo tar -C /usr -xzf ollama-linux-amd64.tgz
  • Docker安装

    • 使用Docker可以快速部署Ollama。首先确保已安装Docker。

    • 拉取Ollama的Docker镜像:

      复制代码
      docker pull ollama/ollama:latest
    • 创建一个docker-compose.yml文件,内容如下:

      复制代码
      version: '3'
      services:
        ollama:
          image: ollama/ollama:latest
          container_name: ollama
          ports:
            - "11434:11434"
          volumes:
            - ./data:/data
    • 启动Ollama服务:

      复制代码
      docker-compose up -d
2. 验证安装

安装完成后,可以通过以下命令启动Ollama服务:

复制代码
ollama serve

或者通过Docker启动:

复制代码
docker start ollama

访问http://localhost:11434,如果页面正常显示,说明Ollama已成功安装。


模型转换与部署

1. 转换模型

Ollama支持GGUF格式的模型,因此需要将LlaMA-Factory导出的模型转换为GGUF格式。

  1. 克隆llama.cpp仓库:

    复制代码
    git clone https://github.com/ggerganov/llama.cpp.git
    cd llama.cpp
  2. 安装依赖:

    复制代码
    pip install -r requirements.txt
  3. convert_hf_to_gguf.py 是一个用于将 HuggingFace 模型转换为 GGUF 格式的脚本,使用convert_hf_to_gguf.py脚本转换模型:

    复制代码
    python convert_hf_to_gguf.py /path/to/your_model --outfile /path/to/output.gguf --outtype q8_0
    • /path/to/your_model:LlaMA-Factory导出的模型路径。

    • /path/to/output.gguf:转换后的GGUF模型路径。

    • --outtype q8_0:指定量化类型,根据实际需求修改。

2. 创建Modelfile

创建一个Modelfile文件,内容如下:

FROM /path/to/output.gguf

/path/to/output.gguf替换为实际的GGUF模型路径。

3. 导入模型到Ollama

将转换后的模型导入到Ollama中:

复制代码
ollama create model_name -f /path/to/Modelfile
  • model_name:自定义模型名称。
4. 查看和运行模型

查看Ollama中的所有本地模型:

复制代码
ollama list

运行模型进行对话:

复制代码
ollama run model_name

此时,模型已成功部署到Ollama中。

相关推荐
霍格沃兹测试开发学社-小明5 分钟前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇6 分钟前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
xwill*9 分钟前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
网安INF16 分钟前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
陈奕昆17 分钟前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追21 分钟前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
程序小旭21 分钟前
Kaggle平台的使用
人工智能
xieyan081126 分钟前
强化学习工具及优化方法
人工智能
秋邱44 分钟前
高等教育 AI 智能体的 “导学诊践” 闭环
开发语言·网络·数据库·人工智能·python·docker
数据的世界011 小时前
重构智慧书-第3条:公开有界,保密有度:行事的分寸准则
人工智能