激光雷达和相机早期融合

通过外参和内参的标定将激光雷达的点云投影到图像上。

传感器标定

首先需要对激光雷达和相机(用于获取 2D 图像)进行外参和内参标定。这是为了确定激光雷达坐标系和相机坐标系之间的转换关系,包括旋转和平移。通常采用棋盘格等标定工具,通过同时获取激光雷达点云和相机图像中棋盘格的特征点,来计算出两种传感器之间的相对位置和姿态。

深度赋值
• 对于 2D 图像中的每个像素,在投影后的点云中查找与之对应的点(可以通过像素坐标匹配)。一旦找到匹配的点云点,将该点的深度值(通常是点云点到激光雷达中心的距离)赋给 2D 图像中的相应像素,这样就得到了深度图像。
分别展示了检测和分割的效果。

代码参考了Vision-Fusion-Early-Fusion,再次基础上做了一些改进https://github.com/longmangpang/ultralytics-Vision-Fusion-Early-Fusion

相关推荐
淬炼之火3 小时前
阅读:基于深度学习的红外可见光图像融合综述
图像处理·深度学习·机器学习·计算机视觉·特征融合·红外图像识别
CoderBob5 小时前
【EmbeddedGUI】简易Page开发模式
c语言·图像处理·单片机
AndrewHZ17 小时前
【图像处理基石】 怎么让图片变成波普风?
图像处理·算法·计算机视觉·风格迁移·cv
XXYBMOOO2 天前
探索图像处理中的九种滤波器:从模糊到锐化与边缘检测
图像处理·人工智能·python·opencv·计算机视觉
胖墩会武术2 天前
【OpenCV图像处理】图像去噪:cv.fastNlMeansDenoising()
图像处理·opencv·计算机视觉
AndrewHZ2 天前
【图像处理基石】什么是光流法?
图像处理·算法·计算机视觉·目标跟踪·cv·光流法·行为识别
PixelMind3 天前
【IQA技术专题】 基于多模态大模型的IQA Benchmark:Q-BENCH
图像处理·深度学习·lmm·iqa
yy_xzz3 天前
OpenCV 图像处理与键盘交互
图像处理·opencv
粉色挖掘机4 天前
矩阵在图像处理中的应用
图像处理·深度学习·线性代数·矩阵
沉默媛5 天前
如何下载安装以及使用labelme,一个可以打标签的工具,实现数据集处理,详细教程
图像处理·人工智能·python·yolo·计算机视觉