激光雷达和相机早期融合

通过外参和内参的标定将激光雷达的点云投影到图像上。

传感器标定

首先需要对激光雷达和相机(用于获取 2D 图像)进行外参和内参标定。这是为了确定激光雷达坐标系和相机坐标系之间的转换关系,包括旋转和平移。通常采用棋盘格等标定工具,通过同时获取激光雷达点云和相机图像中棋盘格的特征点,来计算出两种传感器之间的相对位置和姿态。

深度赋值
• 对于 2D 图像中的每个像素,在投影后的点云中查找与之对应的点(可以通过像素坐标匹配)。一旦找到匹配的点云点,将该点的深度值(通常是点云点到激光雷达中心的距离)赋给 2D 图像中的相应像素,这样就得到了深度图像。
分别展示了检测和分割的效果。

代码参考了Vision-Fusion-Early-Fusion,再次基础上做了一些改进https://github.com/longmangpang/ultralytics-Vision-Fusion-Early-Fusion

相关推荐
PeterClerk28 分钟前
OpenCV 常用函数+ 示例图
图像处理·人工智能·python·opencv·计算机视觉
木头程序员1 小时前
生成式AI可靠性与可控性技术研究:从真实性到可控编辑
图像处理·人工智能·深度学习·机器学习·计算机视觉·语言模型
航Hang*20 小时前
Photoshop 图形与图像处理技术——第9章:实践训练1——绘制禁烟标志和奥运五环
图像处理·笔记·学习·ui·photoshop
AI即插即用1 天前
超分辨率重建(论文精读) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·计算机视觉·视觉检测·超分辨率重建
碎碎思1 天前
使用 Arm Cortex-M1 实现低成本图像处理系统 的 FPGA 方案详解
arm开发·图像处理·人工智能·fpga开发
xinxiangwangzhi_1 天前
多视图几何--密集匹配SURE(tsgm)
图像处理·计算机视觉
子午1 天前
【2026原创】鱼类识别系统~Python+深度学习+CNN卷积神经网络算法+模型训练+图像识别
图像处理·python·深度学习·cnn
sali-tec1 天前
C# 基于OpenCv的视觉工作流-章12-双边滤波
图像处理·人工智能·opencv·算法·计算机视觉
AI即插即用1 天前
超分辨率重建(代码实践) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
sali-tec2 天前
C# 基于OpenCv的视觉工作流-章11-高斯滤波
图像处理·人工智能·opencv·算法·计算机视觉