使用scikit-learn中的KNN包实现对鸢尾花数据集的预测

1. 导入必要的库

首先,需要导入所需的库:

python 复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report
复制代码

2. 加载鸢尾花数据集

scikit-learn提供了方便的函数来加载鸢尾花数据集:

python 复制代码
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3. 数据预处理

对数据进行标准化处理,以提高KNN算法的性能:

python 复制代码
# 标准化数据
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

4. 训练KNN模型

使用KNeighborsClassifier来训练KNN模型:

python 复制代码
# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)

# 训练模型
knn.fit(X_train, y_train)

5. 进行预测并评估模型

使用测试集进行预测,并评估模型的性能:

python 复制代码
# 进行预测
y_pred = knn.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

# 打印分类报告
print(classification_report(y_test, y_pred, target_names=iris.target_names))

6. 使用自定义数据集

如果有一个自定义的数据集,可以按照以下步骤进行操作。假设有一个CSV文件custom_dataset.csv,其中包含特征和标签。

python 复制代码
# 加载自定义数据集
custom_data = pd.read_csv('custom_dataset.csv')

# 假设特征列为前n-1列,标签列为最后一列
X_custom = custom_data.iloc[:, :-1].values
y_custom = custom_data.iloc[:, -1].values

# 将数据集分为训练集和测试集
X_custom_train, X_custom_test, y_custom_train, y_custom_test = train_test_split(X_custom, y_custom, test_size=0.2, random_state=42)

# 标准化数据
scaler_custom = StandardScaler()
X_custom_train = scaler_custom.fit_transform(X_custom_train)
X_custom_test = scaler_custom.transform(X_custom_test)

# 创建KNN分类器并训练
knn_custom = KNeighborsClassifier(n_neighbors=3)
knn_custom.fit(X_custom_train, y_custom_train)

# 进行预测
y_custom_pred = knn_custom.predict(X_custom_test)

# 计算准确率
accuracy_custom = accuracy_score(y_custom_test, y_custom_pred)
print(f'Custom Dataset Accuracy: {accuracy_custom:.2f}')

# 如果有标签名称,可以打印分类报告
# print(classification_report(y_custom_test, y_custom_pred, target_names=[...]))
相关推荐
偷偷折个角︿16 分钟前
GPT官网/官方入口在哪?国内如何流畅使用ChatGPT?最新镜像站与使用指南
人工智能·gpt·ai·chatgpt
(・Д・)ノ25 分钟前
python打卡day19
人工智能·机器学习
kovlistudio28 分钟前
《零基础学机器学习》学习大纲
人工智能·学习·机器学习
云卓SKYDROID1 小时前
物流无人机自动化装卸技术解析!
运维·人工智能·自动化·无人机·科普·遥控器·云卓科技
anscos1 小时前
Simufact Welding重塑新能源汽车电池盒焊接工艺
人工智能·汽车·焊接工艺·simufact
How_doyou_do1 小时前
项目实战-基于信号处理与SVM机器学习的声音情感识别系统
机器学习·支持向量机·信号处理
hongjianMa1 小时前
【论文阅读】Attentive Collaborative Filtering:
论文阅读·深度学习·推荐系统·推荐算法·多模态·自注意力机制
hongjianMa1 小时前
【论文阅读】Adversarial Training Towards Robust Multimedia Recommender System
论文阅读·深度学习·推荐系统·多模态·对抗·vbpr
字节旅行2 小时前
迁移学习:如何加速模型训练和提高性能
人工智能·机器学习·迁移学习
槑辉_2 小时前
【se-res模块学习】结合CIFAR-10分类任务学习
图像处理·人工智能·pytorch·深度学习·机器学习·分类