OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录

简述

什么是高通滤波?

高通滤波的概念

应用场景

索贝尔算子

算子公式

实现代码

特点

沙尔算子

算子公式

实现代码

特点

拉普拉斯算子

算子公式

实现代码

特点

高通滤波器的对比与应用场景


相关阅读

OpenCV:图像滤波、卷积与卷积核-CSDN博客

OpenCV:图像处理中的低通滤波-CSDN博客


简述

高通滤波是一种增强图像高频分量的处理方法,常用于边缘检测和特征提取。在图像处理中,高通滤波可以突出图像中的边缘、轮廓和细节信息,而抑制平滑区域(低频分量)。

本文将重点介绍三种常见的高通滤波器:索贝尔(Sobel)、沙尔(Scharr) 和 拉普拉斯(Laplacian),并结合代码和应用场景进行讲解。


什么是高通滤波?

高通滤波的概念

高通滤波是对图像进行卷积操作,以保留图像中的快速变化部分(如边缘和细节),同时抑制低频分量(如大面积平坦区域)。

应用场景

  • 边缘检测:提取物体轮廓和边界。
  • 特征提取:用于后续计算机视觉任务(如目标检测)。
  • 图像锐化:增强图像清晰度。

索贝尔算子

索贝尔算子是一种经典的边缘检测算子,通过计算像素梯度,检测图像的水平和垂直边缘。

算子公式

水平边缘检测

垂直边缘检测

实现代码

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))

# 检测单方向效果好, 同时双方向效果差

# y方向 图像边缘
result1 = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)

# x方向 图像边缘
result2 = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)

# 合并
result = cv2.add(result1, result2)

cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 能检测水平和垂直边缘。
  • 可调整核大小(ksize)以控制平滑程度。

运行结果: y方向和x方向

运行结果: 原图和合成后的图


沙尔算子

沙尔算子是对索贝尔算子的优化版本,它在小窗口(如 3×3)中提供更高的精度。

算子公式

水平边缘检测

垂直边缘检测

实现代码

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))

# 与Sobel类似, 只能求x或y方向的边缘

# y方向 图像边缘
result1 = cv2.Scharr(image, cv2.CV_64F, 1, 0)

# x方向 图像边缘
result2 = cv2.Scharr(image, cv2.CV_64F, 0, 1)

# 合并
result = cv2.add(result1, result2)

cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 在处理高频变化的边缘时,精度高于索贝尔算子。
  • 适用于对边缘检测精度要求较高的场景。

拉普拉斯算子

拉普拉斯算子是一种二阶导数算子,结合水平和垂直方向的梯度信息,用于检测图像的边缘。

算子公式

拉普拉斯算子的卷积核常见形式为:

实现代码

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))

# 可以同时求2个方向的边缘,但是对噪音敏感,需要先降噪
result = cv2.Laplacian(image, cv2.CV_64F, ksize=5)

cv2.imshow("image", image)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 同时检测水平、垂直和对角线方向的边缘。
  • 对噪声敏感,适合平滑处理后的图像。

运行结果


高通滤波器的对比与应用场景

算子 特点 适用场景
索贝尔 结合一阶导数,能检测水平和垂直边缘 边缘检测、特征提取
沙尔 索贝尔的改进版,适合处理高频变化区域,精度更高 精细边缘检测
拉普拉斯 二阶导数算子,检测方向无关的边缘,灵敏度高 图像锐化、边缘增强
相关推荐
海盗儿4 分钟前
吴恩达深度学习作业之风格转移Neural Style Transfer (pytorch)
人工智能·计算机视觉
kyle~10 分钟前
深度学习---Pytorch概览
人工智能·pytorch·python·深度学习
说私域11 分钟前
开源AI智能名片链动2+1模式S2B2C商城小程序源码赋能下的社交电商创业者技能跃迁与价值重构
人工智能·小程序·重构·开源·零售
一点.点1 小时前
自动驾驶(ADAS)领域常用数据集介绍
人工智能·深度学习·机器学习·自动驾驶
智驱力人工智能1 小时前
夏季道路安全的AI革命:节省人力、提升效率
人工智能·安全·边缘计算·视觉算法·视觉分析·智能巡航·人工智能云计算
晓数3 小时前
“平价”微智码初尝试
人工智能·jetbrains
新加坡内哥谈技术3 小时前
MCP:人工智能时代的HTTP?探索AI通信新标准
人工智能·自然语言处理·chatgpt
0x2115 小时前
[论文阅读]REPLUG: Retrieval-Augmented Black-Box Language Models
论文阅读·人工智能·语言模型
JOYCE_Leo166 小时前
一文详解卷积神经网络中的卷积层和池化层原理 !!
人工智能·深度学习·cnn·卷积神经网络
18538162800余--6 小时前
矩阵系统源码搭建热门音乐功能板块开发,支持OEM
线性代数·矩阵