C++ 复习总结记录九

C++ 复习总结记录九

主要内容

1、list 介绍及使用

2、list 剖析及模拟实现

3、list 与 vector 对比

一 list 介绍及使用

List 相关文档

1、List 在任意位置进行插入和删除的序列式容器 O(1) ,且该容器可前后双向迭代

2、List 底层是带头双向循环链表,每个元素存储在互不相关的独立节点中,通过指针指向其前一个元素和后一个元素

3、List 与 Forward_List 相似,主要不同在于 Forward_List 是单链表,只能正向迭代更简单高效

4、与其他的序列式容器相比 ( array,vector,deque ),List 通常在任意位置进行插入、移除元素的执行效率更好。

但缺陷是不支持任意位置的随机访问,比如:要访问 List 的第 6 个元素,必须从已知位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;List 还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 List 来说这可能是一个重要的因素 )

1.1 list 构造

c++ 复制代码
构造函数(constructor) 				接口说明
list (size_type n, const value_type& val = value_type()) 构造的list中包含n个值为val的元素

list() 构造空的list
list (const list& x) 拷贝构造函数
list (InputIterator first, InputIterator last) 用[first, last)区间中的元素构造list

1.2 list iterator 的使用

迭代器其实就是节点的指针,但 list 指针的类型应该是 NODE* 而非 T* 需特别注意(像 string,vector 的迭代器就是 T*)

c++ 复制代码
函数声明 					接口说明
begin + end  返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend 返回第一个元素的 reverse_iterator, 即 end 位置,返回最后一个元素下一个位置的 reverse_iterator, 即 begin 位置

begin 和 end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动

rbegin 与 rend 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动

如下图,这里要注意 list 迭代器的 begin + end 和 vector 的区别(list 拥有头节点,所以 begin 返回第一个元素的迭代器,即头节点后一个位置)

1.3 list capacity

c++ 复制代码
函数声明 					接口说明
empty 			检测 list 是否为空, 是返回 true, 否则返回 false
size 			返回 list 中有效节点的个数

1.4 list element access

c++ 复制代码
函数声明 					接口说明
front 			返回 list 的第一个节点中值的引用
back 			返回 list 的最后一个节点中值的引用

1.5 list modifiers

函数声明 				接口说明
push_front 			在 list 首元素前插入值为 val 的元素
pop_front 			删除 list 中第一个元素
push_back 			在 list 尾部插入值为 val 的元素
pop_back 			删除 list 中最后一个元素
insert 				在 list position 位置中插入值为 val 的元素
erase 				删除 list position 位置的元素
swap 				交换两个 list 中的元素
clear 				清空 list 中的有效元素

1.6 list 迭代器失效

迭代器失效即迭代器所指向的节点的无效,list 底层结构为带头结点的双向循环链表,因此在 list 中进行插入时不会导致 list 的迭代器失效,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

c++ 复制代码
void TestListIterator()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
    {
        // erase() 函数执行后, it 所指向的节点已被删除, 因此 it 无效, 在下一次使用 it 时, 必须先给其赋值
        l.erase(it); 
        ++it;
    }
}

// 改正
void TestListIterator()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array+sizeof(array)/sizeof(array[0]));
    auto it = l.begin();
    while (it != l.end())
    {
        l.erase(it++); // it = l.erase(it);
    }
}

二 list 剖析及模拟实现

2.1 模拟实现

迭代器有两种实现方式,具体应根据容器底层数据结构实现

① 原生态指针,比如 vector

② 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法

  1. 指针可以解引用,迭代器的类中必须重载 operator*()
  2. 指针可以通过 -> 访问其所指空间成员,迭代器类中必须重载 oprator->()
  3. 指针可以 ++ 向后移动,迭代器类中必须重载 operator++() 与 operator++(int),至于 operator--() / operator--(int) 根据具体结构抉择,双向链表可以向前移动,需要重载,forward_list 则不需重载
  4. 迭代器需要进行是否相等的比较,因此还需要重载 operator==() 与 operator!=()
c++ 复制代码
#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

namespace lucky
{
	// List 的节点类
	template<class T>
	struct ListNode
	{
		ListNode(const T& val = T())
			: _prev(nullptr)
			, _next(nullptr)
			, _val(val)
		{}

		ListNode<T>* _prev;
		ListNode<T>* _next;
		T _val;
	};


	template<class T, class Ref, class Ptr>
	class ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;

		// Ref 和 Ptr 类型需要重定义下,实现反向迭代器时需要用到
	public:
		typedef Ref Ref;
		typedef Ptr Ptr;
	public:

		// 构造
		ListIterator(Node* node = nullptr)
			: _node(node)
		{}

		// 具有指针类似行为
		Ref operator*() 
		{ 
			return _node->_val;
		}

		Ptr operator->() 
		{ 
			return &(operator*()); 
		}

		// 迭代器支持移动
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			_node = _node->_next;
			return temp;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			_node = _node->_prev;
			return temp;
		}

		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{ 
			return _node != l._node;
		}

		bool operator==(const Self& l)const
		{ 
			return _node == l._node;
		}

		Node* _node;
	};

	template<class Iterator>
	class ReverseListIterator
	{
		// 注意:此处 typename 的作用是明确告诉编译器, Ref 是 Iterator 类中的一个类型,而不是静态成员变量
		// 否则编译器编译时就不知道 Ref 是 Iterator 中的类型还是静态成员变量
		// 因为静态成员变量也是按照 类名::静态成员变量名的方式访问的
	public:
		typedef typename Iterator::Ref Ref;
		typedef typename Iterator::Ptr Ptr;
		typedef ReverseListIterator<Iterator> Self;
	public:
        
		// 构造
		ReverseListIterator(Iterator it)
			: _it(it)
		{}

		// 具有指针类似行为
		Ref operator*()
		{
			Iterator temp(_it);
			--temp;
			return *temp;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

		// 迭代器支持移动
		Self& operator++()
		{
			--_it;
			return *this;
		}

		Self operator++(int)
		{
			Self temp(*this);
			--_it;
			return temp;
		}

		Self& operator--()
		{
			++_it;
			return *this;
		}

		Self operator--(int)
		{
			Self temp(*this);
			++_it;
			return temp;
		}

		// 迭代器支持比较
		bool operator!=(const Self& l)const
		{
			return _it != l._it;
		}

		bool operator==(const Self& l)const
		{
			return _it == l._it;
		}

		Iterator _it;
	};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;

	public:
		// 正向迭代器
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T&> const_iterator;

		// 反向迭代器
		typedef ReverseListIterator<iterator> reverse_iterator;
		typedef ReverseListIterator<const_iterator> const_reverse_iterator;
        
	public:
		// List 的构造
		list()
		{
			CreateHead();
		}

		list(int n, const T& value = T())
		{
			CreateHead();
			for (int i = 0; i < n; ++i)
				push_back(value);
		}

		template <class Iterator>
		list(Iterator first, Iterator last)
		{
			CreateHead();
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		list(const list<T>& l)
		{
			CreateHead();

			// 用 l 中的元素构造临时的 temp, 然后与当前对象交换
			list<T> temp(l.begin(), l.end());
			this->swap(temp);
		}

		list<T>& operator=(list<T> l)
		{
			this->swap(l);
			return *this;
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		// List 的迭代器
		iterator begin() 
		{ 
			return iterator(_head->_next); 
		}

		iterator end() 
		{ 
			return iterator(_head); 
		}

		const_iterator begin() const 
		{ 
			return const_iterator(_head->_next); 
		}

		const_iterator end() const
		{ 
			return const_iterator(_head); 
		}

		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}

		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		const_reverse_iterator rbegin() const
		{
			return const_reverse_iterator(end());
		}

		const_reverse_iterator rend() const
		{
			return const_reverse_iterator(begin());
		}

		// List 容量相关
		size_t size() const
		{
			Node* cur = _head->_next;
			size_t count = 0;
			while (cur != _head)
			{
				count++;
				cur = cur->_next;
			}

			return count;
		}

		bool empty() const
		{
			return _head->_next == _head;
		}

		void resize(size_t newsize, const T& data = T())
		{
			size_t oldsize = size();
			if (newsize <= oldsize)
			{
				// 有效元素个数减少到newsize
				while (newsize < oldsize)
				{
					pop_back();
					oldsize--;
				}
			}
			else
			{
				while (oldsize < newsize)
				{
					push_back(data);
					oldsize++;
				}
			}
		}

		// List 元素访问操作
		// 注意: List不支持 operator[]
		T& front()
		{
			return _head->_next->_val;
		}

		const T& front() const
		{
			return _head->_next->_val;
		}

		T& back()
		{
			return _head->_prev->_val;
		}

		const T& back() const
		{
			return _head->_prev->_val;
		}

		// List 插入和删除
		void push_back(const T& val) 
		{ 
			insert(end(), val); 
		}

		void pop_back() 
		{ 
			erase(--end()); 
		}

		void push_front(const T& val) 
		{ 
			insert(begin(), val); 
		}

		void pop_front() 
		{ 
			erase(begin()); 
		}

		// 在 pos 位置前插入值为 val 的节点
		iterator insert(iterator pos, const T& val)
		{
			Node* pNewNode = new Node(val);
			Node* pCur = pos._node;
			// 先将新节点插入
			pNewNode->_prev = pCur->_prev;
			pNewNode->_next = pCur;
			pNewNode->_prev->_next = pNewNode;
			pCur->_prev = pNewNode;
			return iterator(pNewNode);
		}

		// 删除 pos 位置的节点, 返回该节点的下一个位置
		iterator erase(iterator pos)
		{
			// 找到待删除的节点
			Node* pDel = pos._node;
			Node* pRet = pDel->_next;

			// 将该节点从链表中拆下来并删除
			pDel->_prev->_next = pDel->_next;
			pDel->_next->_prev = pDel->_prev;
			delete pDel;

			return iterator(pRet);
		}

		void clear()
		{
			Node* cur = _head->_next;
			
			// 采用头删除删除
			while (cur != _head)
			{
				_head->_next = cur->_next;
				delete cur;
				cur = _head->_next;
			}

			_head->_next = _head->_prev = _head;
		}

		void swap(lucky::list<T>& l)
		{
			std::swap(_head, l._head);
		}

	private:
		void CreateHead()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;
		}
	private:
		Node* _head;
	};
}

// 对模拟实现的 list 进行测试
// 正向打印链表
template<class T>
void PrintList(const lucky::list<T>& l)
{
	auto it = l.begin();
	while (it != l.end())
	{
		cout << *it << " ";
		++it;
	}

	cout << endl;
}

// 测试 List 的构造
void TestList1()
{
	lucky::list<int> l1;
	lucky::list<int> l2(10, 5);
	PrintList(l2);

	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	lucky::list<int> l3(array, array + sizeof(array) / sizeof(array[0]));
	PrintList(l3);

	lucky::list<int> l4(l3);
	PrintList(l4);

	l1 = l4;
	PrintList(l1);
}

// PushBack() / PopBack() / PushFront() / PopFront()
void TestList2()
{
	// 测试 PushBack 与 PopBack
	lucky::list<int> l;
	l.push_back(1);
	l.push_back(2);
	l.push_back(3);
	PrintList(l);

	l.pop_back();
	l.pop_back();
	PrintList(l);

	l.pop_back();
	cout << l.size() << endl;

	// 测试 PushFront 与 PopFront
	l.push_front(1);
	l.push_front(2);
	l.push_front(3);
	PrintList(l);

	l.pop_front();
	l.pop_front();
	PrintList(l);

	l.pop_front();
	cout << l.size() << endl;
}

// 测试 insert 和 erase
void TestList3()
{
	int array[] = { 1, 2, 3, 4, 5 };
	lucky::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto pos = l.begin();
	l.insert(l.begin(), 0);
	PrintList(l);

	++pos;
	l.insert(pos, 2);
	PrintList(l);

	l.erase(l.begin());
	l.erase(pos);
	PrintList(l);

	// pos 指向的节点已经被删除,pos迭代器失效
	cout << *pos << endl;

	auto it = l.begin();
	while (it != l.end())
	{
		it = l.erase(it);
	}
	cout << l.size() << endl;
}

// 测试反向迭代器
void TestList4()
{
	int array[] = { 1, 2, 3, 4, 5 };
	lucky::list<int> l(array, array + sizeof(array) / sizeof(array[0]));

	auto rit = l.rbegin();
	while (rit != l.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	const lucky::list<int> cl(l);
	auto crit = l.rbegin();
	while (crit != l.rend())
	{
		cout << *crit << " ";
		++crit;
	}
	cout << endl;
}

2.2 list 反向迭代器

反向迭代器的 ++ 就是正向迭代器的 --,因此反向迭代器的实现可以借助正向迭代器,即反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可

c++ 复制代码
template<class Iterator>
    class ReverseListIterator
    {
        public:
        typedef typename Iterator::Ref Ref;
        typedef typename Iterator::Ptr Ptr;
        typedef ReverseListIterator<Iterator> Self;
        public:
        
        // 构造
        ReverseListIterator(Iterator it): _it(it){}

        // 具有指针类似行为
        Ref operator*(){
            Iterator temp(_it);
            --temp;
            return *temp;
        }
        
        Ptr operator->(){ return &(operator*());}

        // 迭代器支持移动
        Self& operator++(){
            --_it;
            return *this;
        }
        
        Self operator++(int){
            Self temp(*this);
            --_it;
            return temp;
        }
        
        Self& operator--(){
            ++_it;
            return *this;
        }
        
        Self operator--(int)
        {
            Self temp(*this);
            ++_it;
            return temp;
        }
        
        // 迭代器支持比较
        bool operator!=(const Self& l)const{ return _it != l._it;}
        bool operator==(const Self& l)const{ return _it ==l._it;}
        Iterator _it;
    };

三 list 与 vector 对比

vector 与 list 都是 STL 中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下

相关推荐
Eumenides_max几秒前
【股票数据API接口32】如何获取融资融券历史走势股数据之Python、Java等多种主流语言实例代码演示通过股票数据接口获取数据
java·开发语言·python·股票api接口·股票数据接口
NoneCoder5 分钟前
JavaScript系列(43)--依赖注入系统实现详解
开发语言·javascript·ecmascript
Icomi_25 分钟前
【PyTorch】3.张量类型转换
c语言·c++·人工智能·pytorch·python·深度学习·神经网络
hy____12330 分钟前
C语言:数据的存储
c语言·开发语言
prettyxian36 分钟前
【c++】vector的使用
开发语言·c++
GISer Liu1 小时前
深入理解Transformer中的解码器原理(Decoder)与掩码机制
开发语言·人工智能·python·深度学习·机器学习·llm·transformer
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
c++·人工智能·学习·ubuntu·计算机视觉·矩阵
TANGLONG2221 小时前
【C++】类与对象初级应用篇:打造自定义日期类与日期计算器(2w5k字长文附源码)
java·c语言·开发语言·c++·python·面试·跳槽
重生之我在20年代敲代码1 小时前
【C++】string类使用详解
c++·笔记
martian6652 小时前
第23篇:Python开发进阶:详解测试驱动开发(TDD)
开发语言·驱动开发·python·tdd