大数据学习(39)- Flink并行度

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1 )并行子任务和并行度

当要处理的数据量非常大时,我们可以把一个算子操作,"复制"多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的"子任务"(subtasks),再将它们分发到不同节点,就真正实现了并行计算。

在Flink执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。

例如:如上图所示,当前数据流中有source、map、window、sink四个算子,其中sink算子的并行度为1,其他算子的并行度都为2。所以这段流处理程序的并行度就是2。

2 )并行度的设置

在Flink中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

1 )代码中设置

我们在代码中,可以很简单地在算子后跟着调用setParallelism()方法,来设置当前算子的并行度:

复制代码
stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

这种方式设置的并行度,只针对当前算子有效。

另外,我们也可以直接调用执行环境的setParallelism()方法,全局设定并行度:

复制代码
env.setParallelism(2);

这样代码中所有算子,默认的并行度就都为2了。我们一般不会在程序中设置全局并行度,因为如果在程序中对全局并行度进行硬编码,会导致无法动态扩容。

这里要注意的是,由于keyBy不是算子,所以无法对keyBy设置并行度。

(2)提交应用时设置

在使用flink run命令提交应用时,可以增加-p参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:

复制代码
bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount 

./FlinkTutorial-1.0-SNAPSHOT.jar

如果我们直接在Web UI上提交作业,也可以在对应输入框中直接添加并行度。

(3)配置文件中设置

我们还可以直接在集群的配置文件flink-conf.yaml中直接更改默认并行度:

复制代码
parallelism.default: 2

这个设置对于整个集群上提交的所有作业有效,初始值为1。无论在代码中设置、还是提交时的-p参数,都不是必须的;所以在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的CPU核心数。

相关推荐
爱吃香菜---www1 分钟前
spark-standalone
大数据·分布式·spark
依年南台33 分钟前
安装Hadoop并运行WordCount程序
大数据·hadoop
TDengine (老段)1 小时前
基于 TSBS 标准数据集下 TimescaleDB、InfluxDB 与 TDengine 性能对比测试报告
java·大数据·开发语言·数据库·时序数据库·tdengine·iotdb
TDengine (老段)1 小时前
TDengine 在金融领域的应用
大数据·数据库·物联网·金融·时序数据库·tdengine·涛思数据
aminghhhh1 小时前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
懒惰的橘猫1 小时前
RDD-自定义分区器案例
大数据
努力毕业的小土博^_^2 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
富能量爆棚2 小时前
Spark缓存-cache
大数据·spark
虾球xz2 小时前
游戏引擎学习第277天:稀疏实体系统
c++·学习·游戏引擎
小堃学编程2 小时前
前端学习(2)—— CSS详解与使用
前端·css·学习