再述 Dijkstra

再述 Dijkstra

学 Dijkstra 好久了,今天再学了一遍,感觉推翻了好多自己的知识......

定义

一种用于求非负权值的图的单源最短路径的算法。

方法

已知:如果要求从起始点 s 到某一个点 x 的最短路径,显然只能从某一个已确认为最短路径的点转移。

给个图:

假设我们的起始点是点 1,现在我们用数组记录从原点到所有点的最短路径:

1 2 3 4 5
0 ∞ \infty ∞ ∞ \infty ∞ ∞ \infty ∞ ∞ \infty ∞

由于其他点的最短路未知,故先用 ∞ \infty ∞ 代替,代码中用很大的一个数字代替即可。

注意到,我们由于要求出某个点出发,所有点的最短路,显然需要更新 n n n 次,其中 n n n 为顶点数量。

在这 n n n 次循环中,我们可以处理出由若干顶点组成的已知最短路集合 ,称之为 K K K。

在每次循环中,用 O ( n ) O(n) O(n) 可以找到距离 u ( u ∈ K ) u(u\in K) u(u∈K) 最近的那个点,更新其最短路表格,并将其加入 K K K​ 中。

最后得到的结果:

1 2 3 4 5
0 5 6 7 6

证明

如何证明这种算法是对的?

假设我们有一张图:

从 a a a 出发,求到 e e e 的最短路径。其中 a → b → e a\rightarrow b\rightarrow e a→b→e 这条路径已确认最短。

显然 a → c → d a\rightarrow c \rightarrow d a→c→d 这条路径并不会比 a → b → e a\rightarrow b\rightarrow e a→b→e 更优,且 d → e d\rightarrow e d→e 这条边的权值一定非负(前提),所以 a → b → e a\rightarrow b \rightarrow e a→b→e 这条路径一定是最优的。

算算时间复杂度,两层 O ( n ) O(n) O(n) 的循环,就 O ( n 2 ) O(n^2) O(n2),对于小数据可过。可允许大小约在 n ≤ 1 0 4 n\le 10^4 n≤104。

优先队列优化

想想能否优化时间复杂度?

注意到,由于是要求 n n n 个点的最短路,那么第一层的循环显然不能舍弃。

考虑优化时找到最近点的枚举步骤。

可以用一个优先队列存起来。存的东西:pair 类型,第一个元素是目前的最短路距离,第二个是点的编号。

那么众所周知,优先队列查找一个元素的时间复杂度是 O ( log ⁡ n ) O(\log n) O(logn) 的,其中 n n n 为元素个数。

每次查找都是一个 O ( log ⁡ n ) O(\log n) O(logn), n n n 次外循环,每次还要通过 O ( m ) O(m) O(m) 的时间复杂度更新最短距离。

所以时间复杂度即为 O ( ( n + m ) log ⁡ n ) O((n+m)\log n) O((n+m)logn)。

一般来说,只要图是联通的, m m m 基本都会比 n n n 大,可近似为 O ( m log ⁡ n ) O (m\log n) O(mlogn)​。

局限性

但是,考虑到一种特殊的情况:完全图。

众所周知,完全图是一种 m = n ( n − 1 ) m=n(n-1) m=n(n−1) 的特殊图,那么优先队列优化的时间复杂度就反而退化成了 O ( n 2 log ⁡ n ) O(n^2 \log n) O(n2logn),反而不如朴素版。

代码

放下优先队列优化后的代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int MAXM=5e5+5;
const int MAXN=1e4+5;
int n,m,s;
bool book[MAXN];
int dis[MAXN];
struct EDGE{
	int to,w,pre;
}edge[MAXM];
int head[MAXN];
priority_queue<pair<int,int>,vector<pair<int,int> > ,greater<pair<int,int> > > heap;
void init()
{
	for(int i=1;i<=n;i++)
	{
		dis[i]=INT_MAX;
	}
	return;
}
void add(int from,int to,int w,int num)
{
	edge[num].to=to;
	edge[num].w=w;
	edge[num].pre=head[from];
	head[from]=num;
	return;
}
int u,v,w;
int main(){
	scanf("%d%d%d",&n,&m,&s);
	init();
	dis[s]=0;
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w,i);
	}
	heap.push(make_pair(0,s));
	while(!heap.empty())
	{
		int t=heap.top().second;
		heap.pop();
		if(book[t]==true)
		{
			continue;
		}
		book[t]=true;
		for(int i=head[t];i!=0;i=edge[i].pre)
		{
			dis[edge[i].to]=min(dis[edge[i].to],dis[t]+edge[i].w);
			heap.push(make_pair(dis[edge[i].to],edge[i].to));
		}
	}
	for(int i=1;i<=n;i++)
	{
		printf("%d ",dis[i]);
	}
	puts("");
	return 0;
}
相关推荐
hansang_IR2 小时前
【题解】洛谷 P4286 [SHOI2008] 安全的航线 [递归分治]
c++·数学·算法·dfs·题解·向量·点积
乐迪信息2 小时前
乐迪信息:AI摄像机在智慧煤矿人员安全与行为识别中的技术应用
大数据·人工智能·算法·安全·视觉检测
AI人工智能+2 小时前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测
GanGuaGua2 小时前
Linux系统:线程的互斥和安全
linux·运维·服务器·c语言·c++·安全
咔咔一顿操作2 小时前
第七章 Cesium 3D 粒子烟花效果案例解析:从原理到完整代码
人工智能·3d·信息可视化·cesium
永日456702 小时前
学习日记-HTML-day51-9.9
前端·学习·html
怀旧,2 小时前
【C++】18. 红⿊树实现
开发语言·c++
lsnm2 小时前
【LINUX网络】IP——网络层
linux·服务器·网络·c++·网络协议·tcp/ip
微三云-轩2 小时前
区块链:重构企业数字化的信任核心与创新动力
人工智能·小程序·区块链·生活·我店
君名余曰正则2 小时前
机器学习04——决策树(信息增益、信息增益率、ID3、C4.5、CART、剪枝、连续值缺失值处理)
人工智能·决策树·机器学习