AAAI2024论文解读|Towards Fairer Centroids in k-means Clustering面向更公平的 k 均值聚类中心

论文标题

Towards Fairer Centroids in k-means Clustering

面向更公平的 k 均值聚类中心

论文链接

Towards Fairer Centroids in k-means Clustering论文下载

论文作者

Stanley Simoes, Deepak P, Muiris MacCarthaigh

内容简介

本文提出了一种新的聚类级质心公平性(Cluster-level Centroid Fairness, CCF)概念,旨在解决传统 k 均值聚类中不同群体在聚类中心代表性上的不公平问题。作者通过引入 Fair-Centroid 方法,专注于提升每个聚类中最不利群体的代表性,从而实现更公平的聚类结果。该方法通过迭代优化框架实现,能够在保持聚类质量的同时显著降低群体间的代表性差异。实验结果表明,Fair-Centroid 在真实数据集上表现出色,为公平聚类提供了一种新的解决方案。

分点关键点

1.聚类级质心公平性(CCF)

提出了一种新的公平性概念,专注于每个聚类内部群体的代表性公平性,而非传统的数据集整体公平性。通过量化每个聚类中群体的代表性差异,CCF 能够更细致地捕捉聚类内的不公平性。

2.Fair-Centroid 方法

通过迭代优化框架实现,初始聚类分配会根据最不利群体的代表性进行调整,以提升其在每个聚类中的代表性。该方法结合了功利主义目标和公平性目标,通过超参数控制两者之间的权衡。

3.实验验证

在 Adult 和 CreditCard 数据集上验证了 Fair-Centroid 的有效性。结果表明,该方法能够在对聚类质量影响较小的情况下显著提升聚类级公平性,优于传统的 k 均值和公平 k 均值方法。

4.公平性与效用的权衡

通过调整超参数,Fair-Centroid 能够在公平性和效用之间实现平衡。实验表明,即使在较小的公平性权重下,该方法也能显著降低群体间的代表性差异,同时保持较高的聚类效用。

5.未来工作

提出了进一步优化 Fair-Centroid 的方向,包括设计更高效的算法(如线性规划松弛和线搜索)以及将该方法扩展到其他聚类算法(如 k-medoids 和模糊 c 均值)。

论文代码

代码链接:https://github.com/RyanWangZf/BioBridge


总结

本文围绕 k 均值聚类中的公平性问题展开研究,提出了一种新的聚类级质心公平性(CCF)概念,并通过 Fair-Centroid 方法实现了对每个聚类中最不利群体的代表性提升。该方法通过迭代优化框架,在保持聚类质量的同时显著降低了群体间的代表性差异。实验结果表明,Fair-Centroid 在真实数据集上表现出色,能够在对聚类效用影响较小的情况下显著提升公平性。未来工作将聚焦于优化算法效率和扩展到其他聚类范式。

AAAI2024论文合集:

AAAI2024论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

相关推荐
Android出海几秒前
Android 15重磅升级:16KB内存页机制详解与适配指南
android·人工智能·新媒体运营·产品运营·内容运营
cyyt2 分钟前
深度学习周报(9.1~9.7)
人工智能·深度学习
聚客AI4 分钟前
🌸万字解析:大规模语言模型(LLM)推理中的Prefill与Decode分离方案
人工智能·llm·掘金·日新计划
max5006007 分钟前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
麦麦麦造20 分钟前
国外网友的3个步骤,实现用Prompt来写Prompt!超简单!
人工智能
闲看云起33 分钟前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
小麦矩阵系统永久免费1 小时前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵
新加坡内哥谈技术1 小时前
Chrome的“无处不在”与推动Web平台演进的使命
人工智能
kailp1 小时前
突破效率与质量边界:深入解析MiniMax-Remover视频物体移除方案
人工智能·ai·大模型·gpu算力·图片渲染
超人不会飛1 小时前
vue3 markdown组件|大模型应用专用
前端·vue.js·人工智能