使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测

代码:

复制代码
# 导入所需的库
from sklearn.datasets import load_iris  # 导入Iris数据集
from sklearn.model_selection import train_test_split  # 导入用于数据划分的train_test_split函数
from sklearn.preprocessing import MinMaxScaler, StandardScaler  # 导入数据归一化和标准化的类
from sklearn.neighbors import KNeighborsClassifier  # 导入K邻近分类器(KNN)

# 加载Iris数据集,包含特征数据和目标标签
iris = load_iris()

# 将数据集划分为训练集和测试集,其中20%作为测试集,80%作为训练集
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

# 初始化MinMaxScaler,将特征缩放到[0, 1]的范围
transfer = MinMaxScaler(feature_range=(0, 1))

# 初始化StandardScaler,将特征进行标准化,均值为0,方差为1
transfer1 = StandardScaler()

# 对训练数据进行标准化
ret_train_data = transfer1.fit_transform(x_train)

# 对测试数据进行标准化
ret_test_data = transfer1.fit_transform(x_test)

# 设置KNN算法中的邻居数为5
n_neighbors_num = 5

# 初始化KNN分类器,设置邻居数
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)

# 用标准化后的训练数据训练KNN模型
knn_model.fit(ret_train_data, y_train)

# 用测试集数据进行预测
y_pre = knn_model.predict(ret_test_data)

# 输出预测结果
print("预测值是: \n", y_pre)

# 输出真实标签
print("真实值是 : \n", y_test)

# 对比预测值和真实值,输出是否一致的布尔值
print("预测值和真实值的对比是: \n", y_pre == y_test)

# 计算KNN模型在测试集上的准确率
score = knn_model.score(ret_test_data, y_test)

# 输出模型的准确率
print("准确率是: \n", score)

结果:

相关推荐
y***86692 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng12042 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
ChoSeitaku2 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
二川bro3 小时前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
大千AI助手5 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
我不是QI7 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
luoganttcc10 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
Ai1731639157911 小时前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
青云交12 小时前
Java 大视界 -- Java 大数据机器学习模型在电商评论情感分析与产品口碑优化中的应用
机器学习·自然语言处理·lstm·情感分析·java 大数据·电商评论·产品口碑
m0_3722570213 小时前
ID3 算法为什么可以用来优化决策树
算法·决策树·机器学习