使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测

代码:

复制代码
# 导入所需的库
from sklearn.datasets import load_iris  # 导入Iris数据集
from sklearn.model_selection import train_test_split  # 导入用于数据划分的train_test_split函数
from sklearn.preprocessing import MinMaxScaler, StandardScaler  # 导入数据归一化和标准化的类
from sklearn.neighbors import KNeighborsClassifier  # 导入K邻近分类器(KNN)

# 加载Iris数据集,包含特征数据和目标标签
iris = load_iris()

# 将数据集划分为训练集和测试集,其中20%作为测试集,80%作为训练集
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

# 初始化MinMaxScaler,将特征缩放到[0, 1]的范围
transfer = MinMaxScaler(feature_range=(0, 1))

# 初始化StandardScaler,将特征进行标准化,均值为0,方差为1
transfer1 = StandardScaler()

# 对训练数据进行标准化
ret_train_data = transfer1.fit_transform(x_train)

# 对测试数据进行标准化
ret_test_data = transfer1.fit_transform(x_test)

# 设置KNN算法中的邻居数为5
n_neighbors_num = 5

# 初始化KNN分类器,设置邻居数
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)

# 用标准化后的训练数据训练KNN模型
knn_model.fit(ret_train_data, y_train)

# 用测试集数据进行预测
y_pre = knn_model.predict(ret_test_data)

# 输出预测结果
print("预测值是: \n", y_pre)

# 输出真实标签
print("真实值是 : \n", y_test)

# 对比预测值和真实值,输出是否一致的布尔值
print("预测值和真实值的对比是: \n", y_pre == y_test)

# 计算KNN模型在测试集上的准确率
score = knn_model.score(ret_test_data, y_test)

# 输出模型的准确率
print("准确率是: \n", score)

结果:

相关推荐
大大dxy大大3 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康4 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
没有钱的钱仔6 小时前
机器学习笔记
人工智能·笔记·机器学习
DP+GISer9 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
~~李木子~~13 小时前
Windows软件自动扫描与分类工具 - 技术文档
windows·分类·数据挖掘
LHZSMASH!14 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
青云交14 小时前
Java 大视界 --Java 大数据在智慧农业农产品市场价格预测与种植决策支持中的应用实战
机器学习·智慧农业·数据安全·农业物联网·价格预测·java 大数据·种植决策
大明者省15 小时前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习
小白狮ww15 小时前
模型不再是一整块!Hunyuan3D-Part 实现可控组件式 3D 生成
人工智能·深度学习·机器学习·教程·3d模型·hunyuan3d·3d创作
印象编程16 小时前
数据挖掘 | 决策树ID3算法
机器学习·数据挖掘