使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测

代码:

复制代码
# 导入所需的库
from sklearn.datasets import load_iris  # 导入Iris数据集
from sklearn.model_selection import train_test_split  # 导入用于数据划分的train_test_split函数
from sklearn.preprocessing import MinMaxScaler, StandardScaler  # 导入数据归一化和标准化的类
from sklearn.neighbors import KNeighborsClassifier  # 导入K邻近分类器(KNN)

# 加载Iris数据集,包含特征数据和目标标签
iris = load_iris()

# 将数据集划分为训练集和测试集,其中20%作为测试集,80%作为训练集
x_train, x_test, y_train, y_test = train_test_split(iris['data'], iris['target'], test_size=0.2, random_state=42)

# 初始化MinMaxScaler,将特征缩放到[0, 1]的范围
transfer = MinMaxScaler(feature_range=(0, 1))

# 初始化StandardScaler,将特征进行标准化,均值为0,方差为1
transfer1 = StandardScaler()

# 对训练数据进行标准化
ret_train_data = transfer1.fit_transform(x_train)

# 对测试数据进行标准化
ret_test_data = transfer1.fit_transform(x_test)

# 设置KNN算法中的邻居数为5
n_neighbors_num = 5

# 初始化KNN分类器,设置邻居数
knn_model = KNeighborsClassifier(n_neighbors=n_neighbors_num)

# 用标准化后的训练数据训练KNN模型
knn_model.fit(ret_train_data, y_train)

# 用测试集数据进行预测
y_pre = knn_model.predict(ret_test_data)

# 输出预测结果
print("预测值是: \n", y_pre)

# 输出真实标签
print("真实值是 : \n", y_test)

# 对比预测值和真实值,输出是否一致的布尔值
print("预测值和真实值的对比是: \n", y_pre == y_test)

# 计算KNN模型在测试集上的准确率
score = knn_model.score(ret_test_data, y_test)

# 输出模型的准确率
print("准确率是: \n", score)

结果:

相关推荐
小鸡吃米…7 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
武子康12 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
ASD125478acx13 小时前
多类型孢子与真菌的智能识别与分类系统YOLO模型优化方法
yolo·目标跟踪·分类
少林码僧14 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
春日见14 小时前
控制算法:PP(纯跟踪)算法
linux·人工智能·驱动开发·算法·机器学习
Yeats_Liao14 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
gorgeous(๑>؂<๑)14 小时前
【中科院-张启超组-AAAI26】WorldRFT: 用于自动驾驶的带强化微调的潜在世界模型规划
人工智能·机器学习·自动驾驶
高洁0115 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
lambo mercy16 小时前
食物照片分类实战
人工智能·分类·数据挖掘
yugi98783816 小时前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类