openRv1126 AI算法部署实战之——Tensorflow模型部署实战

在RV1126开发板上部署Tensorflow算法,实时目标检测+RTSP传输。视频演示地址

rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili

一、准备工作

从官网下载tensorflow模型和数据集

手动在线下载:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

复制代码
TensorFlow预训练模型下载地址:
    https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

往下拉找到ssd_mobilenet_v1_coco并下载

复制代码
    数据集:MSCOCO数据集https://cocodataset.org
            Object(论文版本)有90类物体(加上一个背景类就是91类),label_map可参考:
            https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt

然后将ssd_mobilenet_v1_coco_2018_01_28.tar.gz拷贝至虚拟机

/home/rv1126/ModelConvertSample/original_model目录并解压

二、TensorFlow模型转换为RKNN格式 pb->rknn

转换tensorflow ->RKNN

复制代码
python convert-tensorflow-to-rknn-pre.py

该脚本读取'./original_model/ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb'

模型文件,

使用数据集'./dataset/dataset3.txt',

转换后保存为'./rknn_model/ssd_mobilenet_v1_coco.rknn'文件

三、部署ssd_mobilenet_v1_coco.rknn到RV1126开发板上

1.准备工作

首先在开发板执行如下命令,退出出厂测试程序

复制代码
killall rkmedia_rockx_person_detection

在开发板执行如下命令,挂载nfs根文件系统

复制代码
busybox mount -t nfs -o nolock,nfsvers=3 192.168.1.108:/home/rv1126 /getnfs/

2.拷贝模型到开发板并运行程序​

3.VLC查看视频,串口查看打印坐标

然后在电脑上打开VLC播放器,输入如下取流地址。注意IP地址请根据实际修改

复制代码
rtsp://192.168.1.105/live/main_stream

即可看到实时yolo检测的视频画面。

串口实时打印检测框坐标信息

如需退出请按ctrl+c

4.源码说明

上面运行的openRv1126_yolov5_object_recognize程序源码位于路径:

未完待续

相关推荐
week_泽1 小时前
第6课:如何管理短期记忆和长期记忆 - 学习笔记_6
人工智能·笔记·学习·ai agent
程序员泡椒1 小时前
二分查找Go版本实现
数据结构·c++·算法·leetcode·go·二分
小雨下雨的雨1 小时前
Flutter鸿蒙共赢——墨染算法:柏林噪声与鸿蒙生态中的数字水墨意境
算法·flutter·华为·交互·harmonyos·鸿蒙
NAGNIP7 小时前
万字长文!回归模型最全讲解!
算法·面试
之歆7 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派7 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词7 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3017 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578027 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员8 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡