自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import numpy as np
import paddle
import paddle.nn as nn

seed=1
paddle.seed(seed)

data = [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6], [0.4, 34.0], [0.8, 62.3]]

data=np.array(data)

x_data=data[:,0]
y_data=data[:,1]

x_train=paddle.to_tensor(x_data,dtype=paddle.float32)
y_train=paddle.to_tensor(y_data,dtype=paddle.float32)

class LinearModel(nn.Layer):
    def __init__(self):
       super(LinearModel,self).__init__()
       self.linear=nn.Linear(1,1)
    def forward(self,x):
        x=self.linear(x)
        return x

model=LinearModel()

criterion=paddle.nn.MSELoss()

optimizer=paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

epochs=500
final_checkpoint={}
for epoch in range(1,epochs+1):
    y_prd=model(x_train.unsqueeze(1))
    loss=criterion(y_prd.squeeze(1),y_train)
    optimizer.clear_grad()
    loss.backward()
    optimizer.step()
    if epoch % 10==0 or epoch==1:
        print(f"epoch:{epoch},loss:{float(loss)}")
    if epoch==epochs:
        final_checkpoint['epoch']=epoch
        final_checkpoint['loss']=loss

paddle.save(model.state_dict(),'./基础API/model.params')

model.load_dict(paddle.load('./基础API/model.params'))
model.eval()
x_test=paddle.to_tensor([[1.8]],dtype=paddle.float32)
y_test=model(x_test)
print(f'y_test:{y_test}')
相关推荐
wb043072014 小时前
性能优化实战:基于方法执行监控与AI调用链分析
java·人工智能·spring boot·语言模型·性能优化
AAA小肥杨4 小时前
基于k8s的Python的分布式深度学习训练平台搭建简单实践
人工智能·分布式·python·ai·kubernetes·gpu
mit6.8246 小时前
[Agent可视化] 配置系统 | 实现AI模型切换 | 热重载机制 | fsnotify库(go)
开发语言·人工智能·golang
Percent_bigdata6 小时前
百分点科技发布中国首个AI原生GEO产品Generforce,助力品牌决胜AI搜索新时代
人工智能·科技·ai-native
Gloria_niki6 小时前
YOLOv4 学习总结
人工智能·计算机视觉·目标跟踪
FriendshipT6 小时前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
海森大数据6 小时前
三步破局:一致性轨迹强化学习开启扩散语言模型“又快又好”推理新时代
人工智能·语言模型·自然语言处理
Tencent_TCB6 小时前
云开发CloudBase AI+实战:快速搭建AI小程序全流程指南
人工智能·ai·小程序·ai编程·云开发
Sunhen_Qiletian7 小时前
基于OpenCV与Python的身份证号码识别案例详解
人工智能·opencv·计算机视觉
AustinCyy7 小时前
【论文笔记】Introduction to Explainable AI
论文阅读·人工智能