pytorch基于GloVe实现的词嵌入

PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试


1. GloVe 介绍

基于词的共现信息 (不像 Word2Vec 使用滑动窗口预测)

适合较大规模的数据 (比 Word2Vec 更稳定)
学习出的词向量能捕捉语义信息(如类比关系)

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import jieba
from collections import Counter
from scipy.sparse import coo_matrix

# ========== 1. 数据预处理 ==========
corpus = [
    "我们 喜欢 深度 学习",
    "自然 语言 处理 是 有趣 的",
    "人工智能 改变 了 世界",
    "深度 学习 是 人工智能 的 重要 组成部分"
]

# 分词
tokenized_corpus = [list(jieba.cut(sentence)) for sentence in corpus]
vocab = set(word for sentence in tokenized_corpus for word in sentence)
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for word, idx in word2idx.items()}

# 计算共现矩阵
window_size = 2
co_occurrence = Counter()

for sentence in tokenized_corpus:
    indices = [word2idx[word] for word in sentence]
    for center_idx in range(len(indices)):
        center_word = indices[center_idx]
        for offset in range(-window_size, window_size + 1):
            context_idx = center_idx + offset
            if 0 <= context_idx < len(indices) and context_idx != center_idx:
                context_word = indices[context_idx]
                co_occurrence[(center_word, context_word)] += 1

# 转换为稀疏矩阵
rows, cols, values = zip(*[(c[0], c[1], v) for c, v in co_occurrence.items()])
X = coo_matrix((values, (rows, cols)), shape=(len(vocab), len(vocab)))


# ========== 2. 定义 GloVe 模型 ==========
class GloVe(nn.Module):
    def __init__(self, vocab_size, embedding_dim):
        super(GloVe, self).__init__()
        self.w_embeddings = nn.Embedding(vocab_size, embedding_dim)  # 中心词嵌入
        self.c_embeddings = nn.Embedding(vocab_size, embedding_dim)  # 上下文词嵌入
        self.w_bias = nn.Embedding(vocab_size, 1)  # 中心词偏置
        self.c_bias = nn.Embedding(vocab_size, 1)  # 上下文词偏置
        nn.init.xavier_uniform_(self.w_embeddings.weight)
        nn.init.xavier_uniform_(self.c_embeddings.weight)

    def forward(self, center, context, co_occur):
        w_emb = self.w_embeddings(center)
        c_emb = self.c_embeddings(context)
        w_bias = self.w_bias(center).squeeze()
        c_bias = self.c_bias(context).squeeze()
        dot_product = (w_emb * c_emb).sum(dim=1)
        loss = (dot_product + w_bias + c_bias - torch.log(co_occur + 1e-8)) ** 2
        return loss.mean()


# 初始化模型
embedding_dim = 10
model = GloVe(len(vocab), embedding_dim)

# ========== 3. 训练 GloVe ==========
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
num_epochs = 100

# 转换数据
co_occurrence_tensor = torch.tensor(X.data, dtype=torch.float)
pairs = list(zip(X.row, X.col, co_occurrence_tensor))

for epoch in range(num_epochs):
    total_loss = 0
    np.random.shuffle(pairs)
    for center, context, co_occur in pairs:
        optimizer.zero_grad()
        loss = model(
            torch.tensor([center], dtype=torch.long),
            torch.tensor([context], dtype=torch.long),
            torch.tensor([co_occur], dtype=torch.float)  # 修正数据类型
        )
        loss.backward()
        optimizer.step()
        total_loss += loss.item()

    if (epoch + 1) % 10 == 0:
        print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss:.4f}")

# ========== 4. 获取词向量 ==========
word_vectors = model.w_embeddings.weight.data.numpy()


# ========== 5. 计算相似度 ==========
def most_similar(word, top_n=3):
    if word not in word2idx:
        return "单词不在词汇表中"

    word_vec = word_vectors[word2idx[word]].reshape(1, -1)
    similarities = np.dot(word_vectors, word_vec.T).squeeze()
    similar_idx = similarities.argsort()[::-1][1:top_n + 1]
    return [(idx2word[idx], similarities[idx]) for idx in similar_idx]


# 测试
test_words = ["深度", "学习", "人工智能"]
for word in test_words:
    print(f"【{word}】的相似单词:", most_similar(word))

数据预处理

  • 分词 (使用 jieba.cut()
  • 构建共现矩阵(计算窗口内的单词共现频率)
  • 使用稀疏矩阵存储(提高计算效率)

GloVe 模型

  • Embedding 训练词向量(中心词和上下文词分开)
  • Bias 变量 用于调整预测值
  • 损失函数 最小化 log(共现次数) 与词向量点积的差值

计算词向量相似度

  • 使用 cosine similarity
  • 找出 top_n 最相似的单词
相关推荐
人工智能转人机1 分钟前
16day-人工智能-机器学习-特征工程
人工智能·学习·机器学习·特征工程
Python×CATIA工业智造5 分钟前
Pycaita二次开发基础代码解析:参数化模板创建与设计表驱动建模
python·pycharm·pycatia
这张生成的图像能检测吗6 分钟前
(论文速读)探索多模式大型语言模型的视觉缺陷
人工智能·深度学习·算法·计算机视觉·语言模型·自然语言处理
白应穷奇10 分钟前
编写高性能数据处理代码 01
后端·python
小蜜蜂爱编程14 分钟前
opencv 阈值分割函数
人工智能·opencv·计算机视觉
机器之心20 分钟前
闹玩呢!首届大模型对抗赛,DeepSeek、Kimi第一轮被淘汰了
人工智能·openai
新智元25 分钟前
Claude Opus 4.1 代码实测惊人!OpenAI 开源模型却只会写屎山?
人工智能·openai
攻城狮7号28 分钟前
GPT-5的诞生之痛:AI帝国的现实危机
人工智能·深度学习·openai·gpt-5·sam altman
新智元30 分钟前
奥特曼深夜官宣:OpenAI 重回开源!两大推理模型追平 o4-mini,号称世界最强
人工智能·openai
稚肩32 分钟前
最优化中常见的优化理论
人工智能