【LeetCode】5. 贪心算法:买卖股票时机

太久没更了,抽空学习下。

看一道简单题。

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        
        cost = -1
        profit = 0
        
        for i in prices:
            if cost == -1:
                cost = i
                continue
            

            profit_ = i - cost

            if profit_ > profit:
                profit = profit_

            if cost  > i:
                cost = i
        
        return profit
            

📌 解题思路:贪心算法

🔹 什么是贪心算法?

贪心算法(Greedy Algorithm 的核心思想是:

在每一步都做出当前最优的选择(局部最优),最终得到全局最优解。

在这道题中,我们的目标是在最低点买入,并在未来的某一天卖出,以获得最大利润。

局部最优解:在遍历数组 prices 时,始终记录当前的最低买入价格 cost,并尝试计算最大利润 profit。

全局最优解:整个遍历过程中,确保 profit 始终是所有可能利润中的最大值。

🔹 变量说明

cost:存储最低买入价格,初始为 prices[0](第一天的价格)。

profit:存储最大利润,初始为 0(默认没有利润)。

🔹 遍历 prices 数组的过程

更新最低买入价格 cost

cost = min(cost, i)

遍历过程中,如果发现更低的股票价格 i,就更新 cost,保证买入价始终是历史最低价。

计算并更新最大利润 profit

profit = max(profit, i - cost)

计算当前价格 i 和 cost 之间的利润。

如果利润 i - cost 比之前记录的 profit 更大,就更新 profit。

📌 复杂度分析

时间复杂度:O(n),其中 n 是 prices 的长度。

只遍历一次数组,每次操作 O(1)。

空间复杂度:O(1)。

只使用了 cost 和 profit 两个变量,没有额外的数据结构。

📌 结论:贪心算法的适用性

为什么这道题可以用贪心算法?

题目保证只能买卖一次,所以我们只需关注最低买入价格和最大利润,不需要回溯。

每一步都在做局部最优决策(维护最小买入价,计算最大利润),最终得到了全局最优解。

由于股票价格不能回退,过去的最优选择不会影响未来的决策,所以贪心算法是合适的。

⚠️ 什么时候不能用贪心?

如果题目允许多次买卖(比如 122. 买卖股票的最佳时机 II),贪心算法可能不是最佳选择,因为需要考虑交易次数和冷却期等限制,此时可能需要动态规划(DP)。

📌 总结

✅ 这道题可以使用贪心算法,因为每一步的局部最优(最低买入价 & 最大利润)最终导向了全局最优解。

✅ 时间复杂度 O(n),空间复杂度 O(1),是非常高效的解法。

✅ 代码逻辑清晰,适用于类似的一次交易股票买卖问题。

相关推荐
fen_fen15 分钟前
学习笔记(26):线性代数-张量的降维求和,简单示例
笔记·学习·算法
王禄DUT16 分钟前
炉石传说 第八次CCF-CSP计算机软件能力认证
c++·算法
白熊18842 分钟前
【推荐算法】DeepFM:特征交叉建模的革命性架构
算法·架构·推荐算法
L_cl44 分钟前
【Python 算法零基础 4.排序 ⑪ 十大排序算法总结】
python·算法·排序算法
小刘不想改BUG1 小时前
LeetCode 70 爬楼梯(Java)
java·算法·leetcode
老歌老听老掉牙1 小时前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
lifallen1 小时前
Flink checkpoint
java·大数据·算法·flink
比特森林探险记1 小时前
Go 中的 Map 与字符处理指南
c++·算法·golang
安全系统学习3 小时前
网络安全逆向分析之rust逆向技巧
前端·算法·安全·web安全·网络安全·中间件
sz66cm3 小时前
LeetCode刷题 -- 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现
leetcode·矩阵·深度优先